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Common uses of SPI

● Flash memory
● ADCs
● Chromium Embedded Controller
● LCD Controllers
● Sensors

○ Thermocouples and other high data rate devices
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Advantages:

● Full Duplex in default mode
● Uses 4 pins (or 3 in some implementations)
● Low Processor overhead (even bit banged)
● No “unique address” needed (often just setting a GPIO pin to address)
● No “Protocol” to decode. (although can be used as transport for Protocols)
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Disadvantages:

● Higher pin count than i2c
● No in-band addressing (need HW pins to address)
● No slave ack that the data/command got to the intended recipient.
● No error checking
● Relatively short distances (often only onboard)
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SPI Signals

● MOSI - Master Output Slave Input
○ SIMO, SDI, DI, SDA

● MISO - Master Input Slave Output
○ SOMI, SDO, DO, SDA

● SCLK - Serial Clock (Master output)
○ SCK, CLK, SCL

●  - Slave Select (Master output)SSSS

● CSn, EN, ENB
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SPI Master and Slave
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By I, Cburnett, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=2302801
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Basic SPI Timing Diagram
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SPI Modes

● Modes are composed of two clock characteristics
● CPOL - clock polarity

○ 0 = clock idle state low
○ 1 = clock idle state high

● CPHA - clock phase
○ 0 = data latched falling, output rising
○ 1 = data latched rising, output falling
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SPI Modes Cont’d



SPI Mode Timing - CPOL 0



SPI Mode Timing - CPOL 1
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Let’s look at an example together:

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Example_of_bit-
banging_the_master_protocol



SPI can be more complicated

● Multiple SPI Slaves
○ One chip select for each slave

● Daisy Chaining
○ Inputs to Outputs
○ Chip Selects

● Dual or Quad SPI (or more lanes)
○ Implemented in high speed SPI Flash devices
○ Instead of one MISO, have N MISOs
○ N times bandwidth of traditional SPI

● 3 Wire (Microwire) SPI
○ Combined MISO/MOSI signal operates in half duplex
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Multiple SPI Slaves



SPI Daisy Chain

By en:User:Cburnett - Own workThis W3C-unspecified vector image was created with Inkscape., CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=1482275
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SPI Mode Timing - Multiple Slaves
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SPI hardware summary:

● Old Reliable Bus
● Still quite popular 
● New variants are making it even more useful (QSPI, etc)
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What is spidev?

● Generic pass-through SPI protocol driver
○ Works with SPI controller driver (as do other protocol drivers) 
○ Alternative to protocol-specific SPI drivers

■ driver for SPI nor chip
■ driver for SPI GPIO chip
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What does spidev do?

● Passes data between userspace and SPI controller
○ Collects buffers for tx/rx from userspace application
○ Hands off buffers to SPI controller driver
○ Returns back to userspace when transfer is complete 
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When should spidev be used?

● Prototyping in an environment that's not crash-prone; stray pointers in 
userspace won't normally bring down any Linux system

● Developing simple protocols used to talk to microcontrollers acting as 
SPI slaves, which you may need to change quite often

https://www.kernel.org/doc/Documentation/spi/spidev
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When should spidev NOT be used?

● Of course there are drivers that can never be written in userspace, 
because they need to access kernel interfaces (such as IRQ handlers 
or other layers of the driver stack) that are not accessible to 
userspace

https://www.kernel.org/doc/Documentation/spi/spidev
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SPIDEV

with

BaconBits LED 
controller

Lab section
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Lab #0

Prerequisite: install python spidev module

● pip3 install wheel-*.tar.gz
● pip3 install spidev-*.tar.gz
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Lab #1

Goal: prove hardware is working

●  run pre-built led_test app that flashes pattern on both LED groups
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Lab #2

Goal: write your own software to make hardware do something

●  create python tool for writing a value to LED gpios
○ collect hardware-level SPI info
○ fill it into python script template template-write_value.py
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Lab #2

Answer:

● bus = 2
● device = 1
● max_speed_hz <= 10MHz
● mode = 0 or 3
● cmd = 0x40 $GROUP $VALUE

○ GROUP is 0x0 or 0x1 to select group of LEDs
○ VALUE is single byte specifying pattern for selected LEDs
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Lab #3

Goal: write your own tool for exploring hardware

●  update python tool to set each bit in turn
○ record which bit controls which LED



SCaLE 2019 - Introduction to SPI/SPIDEV

Lab #3

        Answer:
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Lab #4

Goal: write software that actually does something useful with hardware

● use recorded bit-to-LED mapping to create spinner test pattern
● bonus: spin sets of LEDs in opposite directions
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Lab #4

Spinner pattern



SCaLE 2019 - Introduction to SPI/SPIDEV

Lab #4

Answer: 

          1,6,4 = 0x02 | 0x40 | 0x10 = 0x52 ==> inverted = 0x52 ^ 0xff = 0xad

          0,6,3 = 0x01 | 0x40 | 0x08 = 0x49 ==> inverted = 0x49 ^ 0xff = 0xb6

          2,6,5 = 0x04 | 0x40 | 0x20 = 0x64 ==> inverted = 0x64 ^ 0xff = 0x9b


