
Device Tree (DTS), Linux Board Bring up and
Kernel version changing on Embedded systems,
a review of some lessons learned processors
Schuyler Patton SW Applications Sitara™ Processors

Texas Instruments

1

Agenda

• Who am I

• Linux bring up on a new derivative board based on

an existing board.

• Discuss boot flow and what does Linux need to boot

on a board

• Discuss the Board DTS File and its components

• Introduce the “hello world” concept

• Creating and booting a hello_world.dts

• Lifecycle of the LTS kernel

2

Schuyler Patton

• Have been working on embedded software with Texas Instruments for

20+ years

• Currently a member of the Sitara Processors Linux Applications team

and have been for the past 11 years

• Supporting Linux, networking and board porting on TI SOCs

3

Target audience for this discussion

• Specifically would to like to address this presentation to those new to

Linux and are doing their first board port.

• Anybody interesting in looking at how Linux is “Bound” to an

embedded processor on a board to make an embedded system. I will

just call the embedded system the board from here.

4

Level set of the discussion

• This discussion will be about a method to simplify the bring up

process for a new board or kernel.

• This is about getting to a minimal number of elements to get a basic

boot to a prompt.

• An applications engineer put this presentation together, not a kernel

developer. This distinction is sometimes blurred though.

• Perhaps another time and presentation we can discuss additional

strategies that the new board is working as intended.

5

Device Tree Files

• This discussion will be discussing device tree files. This presentation is written

with the assumption that the audience has a little bit of background in what the

DTS file is.

• For a background on Device Tree please look at the tutorial presentation from

Free Electrons which is awesome

• https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf

6

https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf
https://elinux.org/images/f/f9/Petazzoni-device-tree-dummies_0.pdf

The new derivative board based
on an existing board relationship

for Linux bring up

New Derivative Board Based On An Existing Board

Linux

Community

Boards

SOC Vendor

Evaluation

Boards

Existing

Design Board

Inventory

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

8

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

New Board Based On An Existing Board

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

RJ45 PHY

UART

UART

New Additional Peripherals on new board

HDMI
HDMI

Framer

Remove these Peripherals on new board

9

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Existing Board for basing a new design on

The arch/arm/boot/dts/ directory is where the 32bit board dts files are stored

The arch/arm64/boot/dts/ directory is where the 64bit board dts files are stored

• Leveraging a known good

for the new derivative design

• Several Board Vendors

shown here.

• This is just a sample of the

boards in the directory.

• Going to start with the DTS

file of the reference board

10

Board dts File – How do you start?

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

/dts-v1/;

#include “processor.dtsi“

.

.

#include <...>

/ { model = “Board Base Design X1“;

.

.

.

}

• Will the reference

DTS just drop in?

• Completely start

over?

• Going to start

with the DTS file

of the reference

board

11

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Reasons for hello_world dts vs. full board dts

• Developing a minimal working DTS

on a known platform eliminates the

“is it the board or the DTS debate”

• Board bring up can be challenging so

with a functioning minimal set

baseline you can concentrate in

small steps and will make the bring

up process simpler

• By booting to a minimal interface set

allows a base platform to use Linux

utilities to help with debug

• Debugging a DTS that is not

semantically correct is a pain.

• Upgrading kernels will be easier with

a minimal baseline DTS as the

processor.dtsi file most likely will

have significant changes between

releases. Just because the DTS file

compiles does not mean the kernel

will boot cleanly.

12

What initial success looks like

Root

File

System

custom.dtb

Kernel

• Booting to a prompt on the

console with a minimal DTS.

• Not all the peripherals have to be

enabled for the developer to

prove that Linux can be booted

on the new board.

13

Quick Review, booting Linux

RBL SPL U-Boot Kernel

14

Elements needed for a board to boot Linux

processor

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

Linux Kernel

Root Filesystem

Boot Loader

Board DTB

SOC

15

Board state as the boot loader launches Linux

• For this discussion we are expecting

that the boot loader (typically U-Boot)

has been ported to the board and run

and setup a minimal configuration.

• A minimal configuration is that there is

power, the processor is operating at a

performance point and that DDR has

been configured.

• The boot loader loads the Kernel Image

and Board DTB to DDR

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

16

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Board state as the boot loader launches Linux

DDR

custom.dtb

Linux

Kernel

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

17

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

DTS file is what “binds” Linux

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Board DTS

Devicetree is a data structure describing

the hardware components of a particular

computer so that the operating system's

kernel can use and manage those

components, including the CPU or CPUs,

the memory, the buses and the

peripherals.

https://en.wikipedia.org/wiki/Device_tree

18

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://en.wikipedia.org/wiki/Device_tree

New (Derivative) Board Based On An Existing Board

processor

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

peripheral

Board DTS
SOC

/dts-v1/;

#include “processor.dtsi“

#include “base_board_common.dtsi“

#include <...>

.

.

#include <...>

/ { model = “Board Base Design X1“;

.

.

.

}

19

Processor dtsi File

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

/dts-v1/;

#include “processor.dtsi“

.

.

#include <...>

/ { model = “Board Base Design X1“;

.

.

.

}

• Contains the

definition for the

entire SOC.

• Full entitlement

of the SOC, all

on chip

peripherals

defined here.

20

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Processor dtsi File – Processor Architecture

21

Processor dtsi File – SOC internal modules

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

22

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Processor dtsi File – Board Binding

DDR

UART

(console)

SD Card
I2C

USB

CAN

EMAC

eMMC

Display

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

23

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

DTS File – Binding a Peripheral to a board

• What is the binding process?

• All these signals in the block

diagram need to be accounted for

for the driver to function.

• Is the board port developer

responsible to identify “all” the

settings? No

24

DTS File – Binding a Peripheral to a board

• Components of a DTS File

am335x-boneblack.dts

am335x-bone-common.dtsi

Board SOC Arch

dt-bindings/gpio/gpio.h

dt-bindings/pinctrl/am33xx.h

skeleton.dtsi

am33xx.dtsi

am33xx-clocks.dtsi

25

Hello World DTS File

DTS file “binds” Linux to a board

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Board DTS

Devicetree is a data structure describing

the hardware components of a particular

computer so that the operating system's

kernel can use and manage those

components, including the CPU or CPUs,

the memory, the buses and the

peripherals.

https://en.wikipedia.org/wiki/Device_tree

27

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://en.wikipedia.org/wiki/Device_tree

The Hello World DTS File

main() {

 printf("hello, world\n");

}

/dts-v1/;

#include “processor.dtsi“

/ {

 model = “Hello World“;

};

&uart

&mmc

...

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

28

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

Processor dtsi File – Board Binding

DDR

UART

(console)

SD Card

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

29

https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual
https://github.com/beagleboard/beaglebone-black/wiki/System-Reference-Manual

The Hello World DTS File

/dts-v1/;

#include “processor.dtsi“

#include “board-type-common.dtsi“

#include “base-board-common.dtsi“

#include “another-common.dtsi“

/ {

 model = “Hello World“;

};

&uart

&mmc

&emac

&usb

...

/dts-v1/;

#include “processor.dtsi“

/ {

 model = “Hello World“;

};

&uart

&mmc

...

existing_reference_board.dts hello_world.dts

Going to draw on reference DTS to

make the hello_world.dts

30

Building the DTS file to a DTB file (blob)

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- dtbs

CALL scripts/checksyscalls.sh

DTC arch/arm/boot/dts/hello_world.dtb

dtc hello_world.dtb -O dts –o hello_world_as_compiled.dts

• Using the dtbs build target as part of the kernel make system

• Debug tip, how to “un-compile” the DTS file. The reason is that

just because it compiles does not mean it will work. At a

minimum this step could reveal incorrect nesting, over writtern

values.

31

Adding new file to the DTB build

• Add your file to the Makefile in the config area of

the board type you based your board on.

The directory for the Makefile is located here:

(32bit systems) arch/arm/boot/dts

(64bit systems) arch/arm64/boot/dts

32

Where is the DTB file stored?

• The /boot directory in the root

filesystem for the board holds the DTB

for the board.

• For this class of SOC U-Boot uses an

eeprom to identify the board so the

DTB associated with the board can be

loaded with the kernel at boot time

• For this test the hello_world.dtb was

copied over the

am335x_boneblack.dtb to make the

development of the new DTB file.

33

How to make an Hello World DTS

• Ideal case is to develop the

hello_world.dts on the original base

board so you are working from a

known good.

• Iteratively remove elements until the

boot fails…

• Example here used renamed copies of

include files.

34

How to make an Hello World DTS

• Red box shows isolated node

that was not needed to get to

a basic boot.

• Green shows what was still

needed after hello world DTS

was created.

• Process was iterative

35

HW DTS File

• “Hello World” like

minimal board DTS File

• Define the model,

memory

• Voltage regulator for SD

card for root filesytem

• UART node and

supporting pin mux

/dts-v1/;

#include "am33xx.dtsi“

/{

 model = "TI AM335x Hello World ";

 compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";

 memory@80000000 {

 device_type = "memory";

 reg = <0x80000000 0x10000000>; /* 256 MB */

 };

 chosen {

 stdout-path = &uart0;

 };

 vmmcsd_fixed: fixedregulator0 {

 compatible = "regulator-fixed";

 regulator-name = "vmmcsd_fixed";

 regulator-min-microvolt = <3300000>;

 regulator-max-microvolt = <3300000>;

 };

};

&am33xx_pinmux {

 uart0_pins: pinmux_uart0_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x970, PIN_INPUT_PULLUP | MUX_MODE0) /*uart0_rxd.uart0_rxd*/

 AM33XX_IOPAD(0x974, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /*uart0_txd.uart0_txd*/

 >;

36

HW DTS File

• mmc1 Pin Mux

• UART node

• mmc1 node

 mmc1_pins: pinmux_mmc1_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x960, PIN_INPUT | MUX_MODE7) /* spio0_cs1.gpio0_6 */

 AM33XX_IOPAD(0x8fc, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat0.mmc0_dat0 */

 AM33XX_IOPAD(0x8f8, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat1.mmc0_dat1 */

 AM33XX_IOPAD(0x8f4, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat2.mmc0_dat2 */

 AM33XX_IOPAD(0x8f0, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat3.mmc0_dat3 */

 AM33XX_IOPAD(0x904, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_cmd.mmc0_cmd */

 AM33XX_IOPAD(0x900, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_clk.mmc0_clk */

 >;

 };

};

&uart0 {

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins>;

 status = "okay";

};

&mmc1 {

 status = "okay";

 bus-width = <0x4>;

 pinctrl-names = "default";

 pinctrl-0 = <&mmc1_pins>;

 cd-gpios = <&gpio0 6 GPIO_ACTIVE_LOW>;

 vmmc-supply = <&vmmcsd_fixed>;

};

37

HW DTS File

• Blank Slate, let’s build a

“Hello World” like

minimal board DTS File,

just want to get to a

prompt on the console.

/dts-v1/;

#include "am33xx.dtsi"

/ {

 model = "TI AM3359 New Product";

 compatible = "ti,am3359-new-product", "ti,am33xx";

 memory@80000000 {

 device_type = "memory";

 reg = <0x80000000 0x10000000>; /* 256 MB */

 };

 chosen {

 stdout-path = &uart0;

 };

};

&am33xx_pinmux {

 uart0_pins: pinmux_uart0_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x970, PIN_INPUT_PULLUP | MUX_MODE0) /* uart0_rxd.uart0_rxd */

 AM33XX_IOPAD(0x974, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* uart0_txd.uart0_txd */

 >;

 };

&uart0 {

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins_default>;

 status = "okay";

};

38

HW DTS File

• “Hello World” like

minimal board DTS File

• The first is the defining

the Arch/SOC for the

custom board. What is

the processor the board

is based on

/dts-v1/;

#include "am33xx.dtsi"

/ {

 model = "TI AM3359 New Product";

 compatible = "ti,am3359-new-product", "ti,am33xx";

 memory@80000000 {

 device_type = "memory";

 reg = <0x80000000 0x10000000>; /* 256 MB */

 };

 chosen {

 stdout-path = &uart0;

 };

};

&am33xx_pinmux {

 uart0_pins: pinmux_uart0_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x970, PIN_INPUT_PULLUP | MUX_MODE0) /* uart0_rxd.uart0_rxd */

 AM33XX_IOPAD(0x974, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /* uart0_txd.uart0_txd */

 >;

 };

&uart0 {

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins_default>;

 status = "okay";

};

Arch/SOC Abstraction

39

HW DTS File

• “Hello World” like

minimal board DTS

File

• Defining the root node

model, compatibility,

memory….

/dts-v1/;

#include "am33xx.dtsi"

/ {

 model = "TI AM335x Hello World ";

 compatible = "ti,am335x-bone-black", "ti,am335x-bone", "ti,am33xx";

 memory@80000000 {

 device_type = "memory";

 reg = <0x80000000 0x10000000>; /* 256 MB */

 };

 chosen {

 stdout-path = &uart0;

 };

 vmmcsd_fixed: fixedregulator0 {

 compatible = "regulator-fixed";

 regulator-name = "vmmcsd_fixed";

 regulator-min-microvolt = <3300000>;

 regulator-max-microvolt = <3300000>;

 };

};

40

For SOC that use pin muxes - what is a pin mux?

• Most pins on the SOC have a mux must be set to enable a peripheral access

• Each pin name has several signal names that can accessed by a mux mode

Pin

Mux
J18

J18 = MII1_TXD3.dcan0_tx

• In this example J18 is using mux mode 1 which is the

DCAN0 TX signal

• The silicon IP in the DTS has to be connected to the pin

41

HW DTS File

• “Hello World” like

minimal board DTS File

• Defining the pin mux for

a peripheral, in this case

UART

• On SOCs that use a pin

mux for signal routing

this is a critical step.

&am33xx_pinmux {

 uart0_pins: pinmux_uart0_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x970, PIN_INPUT_PULLUP | MUX_MODE0) /*uart0_rxd.uart0_rxd*/

 AM33XX_IOPAD(0x974, PIN_OUTPUT_PULLDOWN | MUX_MODE0) /*uart0_txd.uart0_txd*/

 >;

 };

 mmc1_pins: pinmux_mmc1_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x960, PIN_INPUT | MUX_MODE7) /* spio0_cs1.gpio0_6 */

 AM33XX_IOPAD(0x8fc, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat0.mmc0_dat0 */

 AM33XX_IOPAD(0x8f8, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat1.mmc0_dat1 */

 AM33XX_IOPAD(0x8f4, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat2.mmc0_dat2 */

 AM33XX_IOPAD(0x8f0, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_dat3.mmc0_dat3 */

 AM33XX_IOPAD(0x904, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_cmd.mmc0_cmd */

 AM33XX_IOPAD(0x900, PIN_INPUT_PULLUP | MUX_MODE0) /* mmc0_clk.mmc0_clk */

 >;

 };

};

42

HW DTS File

• “Hello World” like

minimal board DTS File

• Finally enable the nodes

with information specific

to the new board

&uart0 {

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins>;

 status = "okay";

};

&mmc1 {

 status = "okay";

 bus-width = <0x4>;

 pinctrl-names = "default";

 pinctrl-0 = <&mmc1_pins>;

 cd-gpios = <&gpio0 6 GPIO_ACTIVE_LOW>;

 vmmc-supply = <&vmmcsd_fixed>;

};

• Notice “&” for uart0, this means information is being appended to the uart0

node that is defined in the processor dtsi. Recommend to never modify the

processor dtsi to add board binding information like what is shown here

43

HW DTS File – What binding was needed

• UART node in the DTS

File

• UART node

disassembled from the

DTB file, significant

difference. DTS only

needs to define the

pinmux and set status to

“okay” in this example.

• Remember the debug tip

from earlier about

reverse compiling the

DTB file.

&uart0 {

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins>;

 status = "okay";

};

serial@44e09000 {

 compatible = "ti,am3352-uart", "ti,omap3-uart";

 ti,hwmods = "uart1";

 clock-frequency = <0x2dc6c00>;

 reg = <0x44e09000 0x2000>;

 interrupts = <0x48>;

 status = "okay";

 dmas = <0x26 0x1a 0x0 0x26 0x1b 0x0>;

 dma-names = "tx", "rx";

 pinctrl-names = "default";

 pinctrl-0 = <0x2a>;

};

44

HW DTS File – What binding was needed

• UART node in the DTS

File

• UART node

disassembled from the

DTB file, significant

difference. DTS only

needs to define the

pinmux and set status to

“okay” in this example.

• Remember the debug tip

from earlier about

reverse compiling the

DTB file.

&uart0 {

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins>;

 status = "okay";

};

serial@44e09000 {

 compatible = "ti,am3352-uart", "ti,omap3-uart";

 ti,hwmods = "uart1";

 clock-frequency = <0x2dc6c00>;

 reg = <0x44e09000 0x2000>;

 interrupts = <0x48>;

 status = "okay";

 dmas = <0x26 0x1a 0x0 0x26 0x1b 0x0>;

 dma-names = "tx", "rx";

 pinctrl-names = "default";

 pinctrl-0 = <0x2a>;

};

45

Uart Binding Doc

OMAP UART controller

Required properties:

- compatible : should be "ti,j721e-uart", "ti,am654-uart"

 for J721E controllers

- compatible : should be "ti,am654-uart" for AM654 controllers

- compatible : should be "ti,omap2-uart" for OMAP2 controllers

- compatible : should be "ti,omap3-uart" for OMAP3 controllers

- compatible : should be "ti,omap4-uart" for OMAP4 controllers

- compatible : should be "ti,am4372-uart" for AM437x controllers

- compatible : should be "ti,am3352-uart" for AM335x controllers

- compatible : should be "ti,dra742-uart" for DRA7x controllers

- reg : address and length of the register space

- interrupts or interrupts-extended :

 Should contain the uart interrupt

 specifier or both the interrupt

 controller phandle and interrupt

 specifier.

- ti,hwmods : Must be "uart<n>", n being the

 instance number (1-based)

Optional properties:

- clock-frequency : frequency of the clock input to the UART

- dmas : DMA specifier, consisting of a phandle to the DMA

 controller node and a DMA channel

 number.

- dma-names : "rx" for receive channel,

 "tx" for transmit channel.

- rs485-rts-delay, rs485-rx-during-tx, linux,

- rs485-enabled-at-boot-time: see rs485.txt

- rs485-rts-active-high: drive RTS high when sending

 (default is low).

- clocks: phandle to the functional clock as per

 Documentation/devicetree/bindings/clock/clock-bindings.txt

Example:

uart4: serial@49042000 {

 compatible = "ti,omap3-uart";

 reg = <0x49042000 0x400>;

 interrupts = <80>;

 dmas = <&sdma 81 &sdma 82>;

 dma-names = "tx", "rx";

 ti,hwmods = "uart4";

 clock-frequency = <48000000>;

 };

Documentation/devicetree/bindings/serial/omap_serial.txt

46

Uart Binding Doc

OMAP UART controller

Required properties:

- compatible : should be "ti,j721e-uart", "ti,am654-uart"

 for J721E controllers

- compatible : should be "ti,am654-uart" for AM654 controllers

- compatible : should be "ti,omap2-uart" for OMAP2 controllers

- compatible : should be "ti,omap3-uart" for OMAP3 controllers

- compatible : should be "ti,omap4-uart" for OMAP4 controllers

- compatible : should be "ti,am4372-uart" for AM437x controllers

- compatible : should be "ti,am3352-uart" for AM335x controllers

- compatible : should be "ti,dra742-uart" for DRA7x controllers

- reg : address and length of the register space

- interrupts or interrupts-extended :

 Should contain the uart interrupt

 specifier or both the interrupt

 controller phandle and interrupt

 specifier.

- ti,hwmods : Must be "uart<n>", n being the

 instance number (1-based)

Optional properties:

- clock-frequency : frequency of the clock input to the UART

- dmas : DMA specifier, consisting of a phandle to the DMA

 controller node and a DMA channel

 number.

- dma-names : "rx" for receive channel,

 "tx" for transmit channel.

- rs485-rts-delay, rs485-rx-during-tx, linux,

- rs485-enabled-at-boot-time: see rs485.txt

- rs485-rts-active-high: drive RTS high when sending

 (default is low).

- clocks: phandle to the functional clock as per

 Documentation/devicetree/bindings/clock/clock-bindings.txt

Example:

uart4: serial@49042000 {

 compatible = "ti,omap3-uart";

 reg = <0x49042000 0x400>;

 interrupts = <80>;

 dmas = <&sdma 81 &sdma 82>;

 dma-names = "tx", "rx";

 ti,hwmods = "uart4";

 clock-frequency = <48000000>;

 };

Documentation/devicetree/bindings/serial/omap_serial.txt

47

Did the hello world work?
Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.19.59-g5f8c1c6121 (oe-user@oe-host) (gcc version 8.3.0 (GNU

Toolchain for the A-profile Architecture 8.3-2019.03 (arm-rel-8.36))) #1 PREEMPT Sat Oct 19

17:17:25 UTC 2019

[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7), cr=10c5387d

[0.000000] OF: fdt: Machine model: TI AM335x Hello World

[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 129920

[0.000000] Kernel command line: console=ttyO0,115200n8 root=PARTUUID=00000000-02 rw

rootfstype=ext4 rootwait

48

Did the hello world work?
Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.19.59-g5f8c1c6121 (oe-user@oe-host) (gcc version 8.3.0 (GNU

Toolchain for the A-profile Architecture 8.3-2019.03 (arm-rel-8.36))) #1 PREEMPT Sat Oct 19

17:17:25 UTC 2019

[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7), cr=10c5387d

[0.000000] OF: fdt: Machine model: TI AM335x Hello World

[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 129920

[0.000000] Kernel command line: console=ttyO0,115200n8 root=PARTUUID=00000000-02 rw

rootfstype=ext4 rootwait

49

Did the hello world work?
Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.19.59-g5f8c1c6121 (oe-user@oe-host) (gcc version 8.3.0 (GNU

Toolchain for the A-profile Architecture 8.3-2019.03 (arm-rel-8.36))) #1 PREEMPT Sat Oct 19

17:17:25 UTC 2019

[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7), cr=10c5387d

[0.000000] OF: fdt: Machine model: TI AM335x Hello World

[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 129920

[0.000000] Kernel command line: console=ttyO0,115200n8 root=PARTUUID=00000000-02 rw

rootfstype=ext4 rootwait

/{

 model = "TI AM335x Hello World ";

50

Did the hello world work?

[0.980750] sdhci: Secure Digital Host Controller Interface driver

[0.987072] sdhci: Copyright(c) Pierre Ossman

[0.992211] omap_gpio 44e07000.gpio: Could not set line 6 debounce to 200000 microseconds (-

22)

[1.001011] omap_hsmmc 48060000.mmc: Got CD GPIO

[1.006261] omap_hsmmc 48060000.mmc: Linked as a consumer to regulator.1

[1.102726] mmc0: host does not support reading read-only switch, assuming write-enable

[1.122632] mmc0: new high speed SDHC card at address 0007

[1.136358] mmcblk0: mmc0:0007 SD08G 7.42 GiB

[1.143832] mmcblk0: p1 p2

[1.182949] EXT4-fs (mmcblk0p2): mounted filesystem with ordered data mode. Opts: (null)

[1.191317] VFS: Mounted root (ext4 filesystem) on device 179:2.

[1.217988] Run /sbin/init as init process

&mmc1 {

 status = "okay";

 bus-width = <0x4>;

 pinctrl-names = "default";

 pinctrl-0 = <&mmc1_pins>;

 cd-gpios = <&gpio0 6 GPIO_ACTIVE_LOW>;

 vmmc-supply = <&vmmcsd_fixed>;

};

51

Did the hello world work?

[OK] Started telnetd.service.

 Starting busybox-udhcpd.service...

 Starting thttpd.service...

[OK] Started Matrix GUI.

[OK] Started busybox-udhcpd.service.

[OK] Started thttpd.service.

 _____ _____ _ _

| _ |___ ___ ___ ___ | _ |___ ___ |_|___ ___| |_

| | _| .'| . | . | | __| _| . | | | -_| _| _|

|__|__|_| |__,|_ |___| |__| |_| |___|_| |___|___|_|

 |___| |___|

Arago Project http://arago-project.org am335x-evm ttyS0

Arago 2019.07 am335x-evm ttyS0

am335x-evm login: root

root@am335x-evm:~#

root@am335x-evm:~#

52

LTS Kernel Lifecycle
and the new Board

Linux Board Port – SDK Lifecycle

Linux Kernel
Current Annual LTS

Initial board port

Time

Linux Kernel
LTS + …

Production

Linux Kernel
LTS + 1

Linux Kernel
LTS + 2

LTS Release Date

Issue detected during

testing fixed in later Kernel

Backport ?

Upgrade/Port ?

54

How Processor dtsi files change over time
• In one year there significant changes to

am335x-bone-common.dtsi (one of include

files for am335x-boneblack.dts) and more

importantly the AM335x processor

am33xx.dtsi file

• When a board dts is not updated or

maintained to kernel version it mostly likely

will fail to at least compile.

• Recommend keeping the board

hello_world.dts up to date.

• Never modify the processor dtsi file, makes

upgrades that much more difficult

55

Keep at least the Hello World file current

Existing

Design Board

Inventory

• Reasons for recommending to at least keeping

the board hello_world.dts up to date with the

latest kernel.

• Board Design Refresh

• (components EOL)

• Revision of board design

• (debating upgrading kernels as well)

• Looking to see if a later driver might fix an

issue, don’t have to do a full upgrade.

56

Q/A

Building the root filesystem into
the Linux Kernel

Building the root filesystem into the kernel

• If there is an issue with the board for

the interface that would be used for

the root filesystem this technique can

be used to bypass the interface, boot

the kernel and perhaps debug the

problematic interface.

• Need to find a source for the root

filesytem, needs to be small.

• Make sure the linux utilities needed

for debug are in the filesystem.

59

Building the root filesystem into the kernel

60

Building the root filesystem into the kernel

• This increases the size of the

kernel so take that into account

as the kernel is read into DDR

by U-Boot.

61

Thank You!

62

