

USB and Linux

Alan Ott
SCaLE 17x

March 7-10, 2019

About the Presenter

● Platform Software at SoftIron
– Data center appliances (storage, transcoding)
– Ceph-based storage appliances
– OverDrive 3000/1000 ARM servers

● OSS Development
– Linux Kernel
– Firmware
– Training
– USB

● M-Stack USB Device Stack for PIC
– 802.15.4 wireless

USB Overview

Universal Serial Bus

● Universal Serial Bus (USB)
● Standard for a high-speed, bi-directional, low-cost,

dynamic bus.
● Created by the USB Implementers Forum

(USB-IF)
● USB-IF is a non-profit corporation formed

by its member companies.
● USB-IF develops and owns copyrights

on the standards documents and
logos.
– http://www.usb.org

http://www.usb.org/

USB Bus Speeds

● Low Speed
● 1.5 Mb/sec

● Full Speed
● 12 Mb/sec

● High Speed
● 480 Mb/sec

● SuperSpeed
● 5.0 Gb/sec

● SuperSpeed+
● 10Gb/sec

USB Bus Speeds

● Bus speeds are the rate of bit
transmission on the bus

● Bus speeds are NOT data transfer speeds
● USB protocol can have significant

overhead
● USB overhead can be mitigated if

your protocol is designed correctly.

USB Standards

● USB 1.1 – 1998
– Low Speed / Full Speed

● USB 2.0 – 2000
– High Speed added

● USB 3.0 – 2008
– SuperSpeed added

● USB Standards do NOT imply a
bus speed!

➢ A USB 2.0 device can be High
Speed, Full Speed, or Low Speed

Host and Device

● Host
● Often a PC, server, or embedded Linux system
● Responsible for control of the bus
● Responsible for initiating

communication with devices
● Responsible for enumeration of

attached devices.
● One host per bus

Host and Device

● Device
● Provide functionality to the host
● Many devices per bus
● Can connect through hubs

– Hubs are transparent to the device!
– Hubs are transparent to host APIs

● Hub drivers are built into the OS

The Bus

● USB is a Host-controlled bus
● Nothing on the bus happens without the

host first initiating it.
● Devices cannot initiate a transaction.
● The USB is a Polled Bus
● The Host polls each device, requesting

data or sending data.
● Devices cannot interrupt the host!

Terminology

● In/Out
● In USB parlance, the terms In and Out indicate

direction from the Host perspective.
– Out: Host to Device
– In: Device to Host

Logical USB Device

Configuration 1

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Endpoint 2 IN

Interface 1

Endpoint 3 OUT

Endpoint 3 IN

Configuration 2

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Interface 1

Endpoint 2 OUT

Endpoint 2 IN

USB Device

USB Terminology

● Device – Logical or physical entity which
performs a function.
● Thumb drive, joystick, etc.

● Configuration – A mode in which to
operate.
● Many devices have one configuration.
● Only one configuration is active at a

time.

USB Terminology

● Interface – A related set of Endpoints which
present a single feature or function to the host.
● A configuration may have multiple interfaces
● All interfaces in a configuration are active

at the same time.
● Endpoint – A source or sink of data

● Interfaces often contain multiple
endpoints, each active all the
time.

Logical USB Device

● Important to note:
● A device can have multiple configurations.

– Only one active at a time
● A configuration can have multiple

interfaces.
– All active at the same time

● An interface can have multiple
endpoints.
– All active at the same time

Logical USB Device

● Most USB devices only have one Configuration.
● Only one configuration can be active at a

time.
● All interfaces within a configuration

are active at the same time.
● This is how composite devices are

implemented.

Endpoint Terminology

● An Endpoint Number is a 4-bit integer associated
with an endpoint (0-15).

● An endpoint transfers data in a single direction.
● An Endpoint Direction is either IN or OUT.
● An Endpoint Address is the combination

of an endpoint number and an endpoint
direction. Examples:
● EP 1 IN
● EP 1 OUT
● EP 3 IN

Endpoint Terminology

● Endpoint addresses are encoded with the
direction and number in a single byte.
● Direction is the MSb (1=IN, 0=OUT)
● Number is the lower four bits.
● Examples:

– EP 1 IN = 0x81
– EP 1 OUT = 0x01
– EP 3 IN = 0x83
– EP 3 OUT = 0x03

● Tools like lsusb will show both

Endpoint Terminology

● Endpoint terminology is tricky (but important!)
● A device can have up to 32 endpoints.

– IN and OUT endpoints for numbers 0-15.

● The same Endpoint Number is used to
describe TWO endpoints.
● EP 1 IN and EP 1 OUT are separate

endpoints!
● There is no such thing as a

physical and logical endpoint.

Real-Life Example

Configuration 1

Interface 0
CDC Control

USB Device

Interface 1
CDC Data

EP 2 OUT

EP 2 IN

EP 1 IN

Interface 2
Vendor-Defined

EP 3 OUT

EP 3 IN

● Composite Device:
– Communication

Device Class (CDC)
● Often virtual serial

port
● Two interfaces are

required for this
class (control and
data).

– Vendor-Defined
class

● Can be used for
generic data
transfer

Descriptors

● USB is a self-describing bus
● Each USB device contains all the information

required for the host to be able to communicate with
it (drivers aside)
– No manual setting of baud rates, IRQ lines,

base addresses, etc.
– Plug devices in and they work

● Devices communicate this data to
the host using descriptors.

Descriptors

● The host will ask for a set of standard
descriptors during enumeration, immediately
upon a device being attached.

● The descriptors describe:
● The device identifier (vendor/product IDs)
● The logical structure of the device

– Configurations, interfaces, endpoints
● Which device classes are

supported (if any)

Descriptors

● Typically, devices contain at least:
● Device descriptor
● Configuration descriptor
● Interface descriptor
● Class-specific descriptors
● Endpoint descriptor

➢ Chapter 9 of the USB spec describes
these standard descriptors

Descriptors

● One tricky thing is that the host will request all
descriptors which are part of a configuration as
a single block.
● This includes Configuration, Interface,

class-specific, and endpoint descriptors
➢ The Get Descriptor (Configuration)

request means all descriptors of a
configuration

Device Descriptor
const struct device_descriptor this_device_descriptor =

{

 sizeof(struct device_descriptor), // bLength

 DESC_DEVICE, // bDescriptorType

 0x0200, // USB Version: 0x0200 = USB 2.0, 0x0110 = USB 1.1

 0x00, // Device class (0 = defined at interface level)

 0x00, // Device Subclass

 0x00, // Protocol

 EP_0_LEN, // bMaxPacketSize0 (endpoint 0 in/out length)

 0xA0A0, // Vendor ID (Fake VID!! Don't use this one!)

 0x0001, // Product ID

 0x0001, // device release (BCD 1.0)

 1, // Manufacturer String Index

 2, // Product String Index

 0, // Serial Number String Index

 NUMBER_OF_CONFIGURATIONS // NumConfigurations

};

Configuration Descriptor

/* The Configuration Packet, in this example, consists
 * of four descriptor structs. Note that there is
 * a single configurarion, a single interface, and two
 * endpoints.
 */

struct configuration_1_packet {

 struct configuration_descriptor config;

 struct interface_descriptor interface;

 struct endpoint_descriptor ep;

 struct endpoint_descriptor ep1_out;

};

Configuration Descriptor (cont'd)
static const struct configuration_1_packet configuration_1 =

{

 {

 // Members from struct configuration_descriptor

 sizeof(struct configuration_descriptor),

 DESC_CONFIGURATION,

 sizeof(configuration_1), // wTotalLength (length of the whole packet)

 1, // bNumInterfaces

 1, // bConfigurationValue

 2, // iConfiguration (index of string descriptor)

 0X80, // bmAttributes

 100/2, // 100/2 indicates 100mA

 },

Configuration Descriptor (cont'd)
 {

 // Members from struct interface_descriptor

 sizeof(struct interface_descriptor), // bLength;

 DESC_INTERFACE,

 0x0, // InterfaceNumber

 0x0, // AlternateSetting

 0x2, // bNumEndpoints (num besides endpoint 0)

 0xff, // bInterfaceClass: 0xFF=VendorDefined

 0x00, // bInterfaceSubclass

 0x00, // bInterfaceProtocol

 0x02, // iInterface (index of string describing interface)

 },

Configuration Descriptor (cont'd)
 {

 // Members of the Endpoint Descriptor (EP1 IN)

 sizeof(struct endpoint_descriptor),

 DESC_ENDPOINT,

 0x01 | 0x80, // endpoint #1 0x80=IN

 EP_BULK, // bmAttributes

 64, // wMaxPacketSize

 1, // bInterval in ms.

 },

 {

 // Members of the Endpoint Descriptor (EP1 OUT)

 sizeof(struct endpoint_descriptor),

 DESC_ENDPOINT,

 0x01, // endpoint #1 OUT (msb clear => OUT)

 EP_BULK, // bmAttributes

 64, // wMaxPacketSize

 1, // bInterval in ms.

 },

};

Configuration Descriptor

● Preceding configuration descriptor described:
● One Configuration
● One interface (vendor defined)
● Two Bulk Endpoints

● See examples in usb_descriptors.c
in any of the M-Stack examples.

Endpoints

● Four types of Endpoints
● Control

– Bi-directional pair of endpoints
– Multi-stage transfers

● Transfers acknowledged on the software level
– Not just hardware!

● Status stage can return success/failure
– Used during enumeration
– Can also be used for application
– Mostly used for configuration items
– Most robust type of endpoint

Endpoints

● Interrupt
– Transfers a small amount of low-latency data
– Reserves bandwidth on the bus
– Used for time-sensitive data (HID).

● Bulk
– Used for large, time-insensitive data

(Network packets, Mass Storage,
etc).

– Does not reserve bandwidth on bus
● Uses whatever time is left over

Endpoints

● Isochronous
– Transfers a large amount of time-sensitive data
– Delivery is not guaranteed

● No ACKs are sent
– Used for Audio and Video streams

● Late data is as good as no data
● Better to drop a frame than to delay and force

a re-transmission

Endpoints

● Reserved Bandwidth
● Different endpoint types will cause the bus to

reserve bandwidth when devices are connected.
– This is how guaranteed, bounded latency is

implemented.

● Interrupt, Isochronous, and Control
endpoints reserve bandwidth.

● Bulk gets whatever bandwidth is
left unused each frame.

Endpoints

● Endpoint Length
● The maximum amount of data an endpoint can

support sending or receiving per transaction.
● Max endpoint sizes:

– Full-speed:
● Bulk/Interrupt: 64
● Isoc: 1024

– High-Speed:
● Bulk: 512
● Interrupt: 3072
● Isoc: 1024 x3

Transactions

● Basic process of moving data to and from a
device.

● USB is host-controlled. All transactions are
initiated by the host.
● Much like everything else in USB

● A single transaction on an endpoint
can move bytes up to the
Endpoint Length

Transactions and Transfers

● Transaction
● Delivery of service to an endpoint
● Max data size: Endpoint length

● Transfer
● One or more transactions moving

information between host and device.
➢ Transfers can be large, even on

small endpoints!

Small Transfers

Transfer

Transaction

● The simplest transfer
contains a single
transaction.

● A transaction's size can
be any length from zero
bytes up to the
endpoint length.

Transfer

Transaction

Transfer

Large Transfers

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Transfers can contain
more than one
transaction.

● Transfers are ended by:
● A short transaction

OR
● When the desired

amount of data has
been transferred
➢ As requested

by the host

Linux USB Gadget

USB Gadget Subsystem

● In addition to providing the USB host
subsystem you are familiar with, Linux also
provides a device subsystem, called gadget.
● Gadget is a Linux-specific name.

● The gadget subsystem provides
a framework for creating USB
devices using a Linux system.
● …if the hardware supports it. Most

embedded USB controllers do.

USB Gadget Subsystem

● USB gadget subsystem provides:
● Framework
● USB Device Controller (UDC) drivers

– Hardware drivers
● USB device class implementations

– Software drivers (so to speak)
● Configuration through configfs

– Pseudo-filesystem for configuring
certain kernel services

Configfs

● Configfs is a pseudo-filesystem used to
manage kernel objects.
● Pseudo-filesystems contain files which are

not present on any disk.
● The files are backed by objects in the

running kernel.
– Creating, deleting, or changing files and

directories will immediately have an
effect in the kernel

● Kernel callback functions are called

Configfs

● Configfs (cont'd)
● Data integrity is enforced by mechanism.

– Only valid file / directory names will be allowed
to be created

– Invalid values will not be allowed to be written
to files

– System calls (read/write/mkdir,etc) will
simply fail if invalid names or values are
used.

➢ This is far better than silent failure

USB Gadget

● To configure your USB Gadget:
● Mount configfs (if not already done)
● Create a directory for the gadget
● Set the vid/pid/strings
● Create a directory for the configuration
● Create a directory for the function

– Mass storage, HID, CDC/ACM, etc.
● Link the function to the configuration
● Enable the gadget

Simple Example – ACM Device
#!/bin/sh -ex

modprobe libcomposite

Mount configfs locally
mkdir -p config
mount none config -t configfs

Create the USB gadget configuration
mkdir -p config/usb_gadget/
cd config/usb_gadget/

Create a gadget called g1
mkdir g1
cd g1

Set the VID/PID/Strings
echo 0x1a0a >idVendor
echo 0xbadd >idProduct
mkdir strings/0x409

Simple Example – ACM Device
Set the VID/PID/Strings (cont'd)
echo 12345 >strings/0x409/serialnumber
echo "Signal 11" >strings/0x409/manufacturer
echo "Test" >strings/0x409/product

Create a configuration called c.1
mkdir configs/c.1
mkdir configs/c.1/strings/0x409
echo "Config1" >configs/c.1/strings/0x409/configuration

Create a function (tty CDC/ACM) named usb0
mkdir functions/acm.usb0

Link that function to configuration c.1
ln -s functions/acm.usb0 configs/c.1

Enable the USB device. Find the device
name in /sys/class/udc/ .
echo musb-hdrc.0 >UDC

Simple Example - Device

● The above example will create a CDC/ACM
device.
● A Linux host will identify this device as
/dev/ttyACMn.

● The device/gadget side will create a
device node at /dev/ttyGS0.
– Read and write to/from this node from

the gadget to communicate with the
host.

Simple Example – ACM Device

● Lab #1
● On the device:

– Run ./acm_setup.sh

● On the host, run:
– dmesg

● Check for the new device name
– sudo screen /dev/ttyACMn

● On the device, run:
– echo “some text” >/dev/ttyGS1
– cat /dev/ttyGS1

Simple Example – ACM Device

● In theory, the device can be disabled, changed,
and re-enabled.

● In practice, on many parts, this is fraught
with oopses, hangups, and other peril.

● Generally, you will want to setup your
gadget and leave it.

Simple Example – ACM Device

● The previous example is designed to be as
simple as possible
● No source code, even!

● CDC/ACM is the best solution for
emulating a serial port, and that's all.

● Don't use CDC/ACM as an arbitrary
solution for connectivity
● It's inefficient
● Its burdensome on the end user

USB Gadget

● We showed ACM, but what other protocols are
implemented?
● Start in Kernel source at:

Documentation/filesystems/gadget_configfs.txt

● Which references:
Documentation/ABI/testing

● Where you can: ls *usb-gadget*

USB Gadget

As of 4.15, these gadgets are documented:
configfs-usb-gadget configfs-usb-gadget-phonet
configfs-usb-gadget-acm configfs-usb-gadget-printer
configfs-usb-gadget-ecm configfs-usb-gadget-rndis
configfs-usb-gadget-eem configfs-usb-gadget-serial
configfs-usb-gadget-ffs configfs-usb-gadget-sourcesink
configfs-usb-gadget-hid configfs-usb-gadget-subset
configfs-usb-gadget-loopback configfs-usb-gadget-tcm
configfs-usb-gadget-mass-storage configfs-usb-gadget-uac1
configfs-usb-gadget-midi configfs-usb-gadget-uac2
configfs-usb-gadget-ncm configfs-usb-gadget-uvc
configfs-usb-gadget-obex

See these files in: Documentation/ABI/testing/

USB Gadget

● Briefly, some supported functions are:
● acm – CDC/ACM virtual serial port
● ecm/eem/ncm/phonet/rndis/subset – Virtual network

device
● ffs – function filesystem

– Define a custom class from userspace
● hid – Human interface device
● loopback – for testing
● mass-storage – present drives to the host

USB Gadget

● Supported functions (cont'd):
● midi – musical instrument
● printer – printers
● serial – serial interface on the gadget side, but bulk

interface on the host side
● sourcesink – source and sink for testing
● tcm – USB-attached SCSI
● uac1/2 – USB audio class, v1 and v2
● uvc - video

USB Gadget

● Find more information about each gadget in it's
respective source file:

drivers/usb/gadget/function/f_*.c

● As usual in the kernel, documentation is hit-or-
miss

FunctionFS

● The gadget subsystem provides a function
called FunctionFS, which allows complete
configuration of the device through a user
space application.

● The user space application provides:
● All the descriptors/strings

● Functionfs will then use the
descriptors to create device
nodes for each endpoint.

FunctionFS

● The user space application can then read and
write to/from these device nodes to move data
across the bus.

● This is better than using ACM because
there is no TTY layer in the way.
● The TTY layer will chop up your write()s
● Using FFS, one write() is one

USB transfer.
– This can get you close to wire speed

FunctionFS

● Modifying the previous script which (which
creates an ACM device), use the ffs function
instead of the acm function.

● After this, mount the FunctionFS
pseudo-filesystem for your device.
● This filesystem will give you an ep0

pseudo-file.
● Writing to this ep0 file with

descriptors will configure
your device

FunctionFS

● Start your user space program which will write
to the ep0 file and configure the gadget.
● Based on your configuration (the descriptors)

FunctionFS will then create a pseudo-file
for each endpoint.

● Enable the USB device
● Read/write the endpoint

pseudo-files to transfer data.

FunctionFS Example
Setup the function, FunctionFS (named usb0)
mkdir functions/ffs.usb0
ln -s functions/ffs.usb0 configs/c.1

Mount the function filesystem for usb0
cd ../../../
mkdir -p ffs
mount usb0 ffs -t functionfs

From inside the mounted ffs directory, run your
user space program and wait until it's started.
cd ffs
../ffs-test/ffs-test & # from the Linux kernel
sleep 3
cd ..

Enable the USB device
echo musb-hdrc.0 >config/usb_gadget/g1/UDC

FunctionFS Example

● The kernel provides a sample user space
program for FunctionFS.

● Unfortunately, it's more of a test program
than an example to learn from.
● Few comments
● Complex design and indirection
● Ambiguous naming

● Find it in:
tools/usb/ffs-test.c

FunctionFS Example

● The kernel sample creates:
● ep0 (unused for this example)
● ep1 – Bulk IN, 512 bytes (high speed)
● ep2 – Bulk OUT, 512 bytes (high speed)

● ep1 creates an endless source of data
● ep2 sinks an endless stream of data
● ep1/2 are address 0x81 and 0x80
● Also note that it's explicitly GPL.

FunctionFS Lab

● Lab #2
● Build the ffs-test program from the kernel

– cd ffs-test && make && cd ..

● Run the ./ffs_setup.sh script as root.
● Use lsusb and dmesg to observe the

device is detected on the host.
➢ You will communicate with this device

in the next lab

libusb

libusb

● libusb is a multi-platform host-side USB library
● Linux, BSD, OS X, Windows, others

● Runs in user space. No kernel
programming required.

● Easy to use synchronous API
● High-performance asynchronous API
● Supports all versions of USB

libusb

● A libusb host runs on a general purpose multi-
process OS.
● Sufficient permissions are required to open

a device
● Opening a device or interface may be

exclusive (only one process at a time).

libusb

● From a host perspective, the basic unit of a
USB connection is the USB interface, not the
device.
● This is because devices can have multiple

interfaces, each of which may require a
different driver.

● Some composite devices may have
some standard interfaces (eg: CDC)
and also some vendor-defined
interfaces (eg: earlier example)

libusb Exampleint main(int argc, char **argv)
{
 libusb_device_handle *handle;
 unsigned char buf[64];
 int length = 64, actual_length, i, res;

 /* Init libusb */
 if (libusb_init(NULL))
 return -1;

 /* Open the device. This is a shortcut function. */
 handle = libusb_open_device_with_vid_pid(
 NULL, 0xa0a0, 0x0001);
 if (!handle) {
 perror("libusb_open failed: ");
 return 1;
 }

 /* Claim the interface for this process */
 res = libusb_claim_interface(handle, 0);
 if (res < 0) {
 perror("claim interface");
 return 1;
 }

libusb Example (cont'd)
 /* Initialize the data */
 my_init_data_function(buf, length);

 /* Send some data to the device */
 res = libusb_bulk_transfer(
 handle, 0x01, buf, length, &actual_length, 5000);
 if (res < 0) {
 fprintf(stderr, "bulk transfer (out): %s\n",
 libusb_error_name(res));
 return 1;
 }

 /* Receive data from the device */
 res = libusb_bulk_transfer(handle, 0x81, buf, length,
 &actual_length, 5000);
 if (res < 0) {
 fprintf(stderr, "bulk transfer (in): %s\n",
 libusb_error_name(res));
 return 1;
 }

 /* Process the data */
 my_process_received_data_function(buf, &actual_length);

 return 0;
}

libusb

● Observations:
● libusb, and libusb_bulk_transfer() deal

with transfers, not transactions.
– The length can be arbitrarily long and longer

than the endpoint length.
– If so, libusb will behave as expected, initiating

transactions until the required amount of
data has been transferred.

– If the device returns a short packet, the
transfer will end, and actual_length
will indicate the actual amount of
data received.

libusb

● Observations (cont'd):
● The libusb_bulk_transfer() function is used

for both IN and OUT transfers
– The endpoint address (which contains the

direction) is used to determine whether it's an
IN or OUT transfer.

libusb

● Observations (cont'd):
● The interface must be claimed before

it can be used.
– If another process, or a kernel driver, is using

this interface, it will kick the other driver off.
– This can be good or bad depending on your

point of view.

libusb

● Observations (cont'd):
● The libusb functions take a timeout parameter.

– This timeout is how long the device has to
complete the transfer.

– It can be any value the host desires
● The host is in charge of the bus!

– 5 seconds is good for general purposes,
but the author recently made one over
90 seconds!

● It all depends on the use case!

libusb

● The simple example used libusb's
synchronous API.
● Good for infrequent, single transfers.

– Easy to use, blocking, return code
● Bad for any kind of performance-critical

applications.
– Why? Remember the nature of the

USB bus....

● The USB Bus
● Entirely host controlled
● Device only sends data when the host

controller specifically asks for it.
● The host controller will only ask for data

when a transfer is active.
– libusb creates a transfer when (in our

example) libusb_bulk_transfer() is
called.

Synchronous API Issues

Synchronous API Issues

libusb_bulk_transfer()

ioctl(IOCTL_USBFS_SUBMITURB)

*HCI

Send IN token

Send data packet

Send ACK

DeviceHost

USB Host
Controller
Hardware USB Transaction

Synchronous API Issues

● USB Bus
● After one transfer completes, nothing happens on

the bus until the next libusb transfer function is
called.

● One might think it's good enough to call
libusb_bulk_transfer() in a tight loop.
– Tight loops are not tight enough!

● For short transfers, time spent in software
will be more than time spent in
hardware!

● All time spent in software is time a
transfer is not active!

Asynchronous API

● Fortunately libusb and the kernel provide an
asynchronous API.
● Create multiple transfer objects
● Submit transfer objects to the kernel
● Receive a callback when transfers

complete
● When a transfer completes, there is

another (submitted) transfer
already queued.
● No downtime between transfers!

Asynchronous API Example
static struct libusb_transfer
*create_transfer(libusb_device_handle *handle, size_t length) {
 struct libusb_transfer *transfer;
 unsigned char *buf;

 /* Set up the transfer object. */
 buf = malloc(length);
 transfer = libusb_alloc_transfer(0);
 libusb_fill_bulk_transfer(transfer,
 handle,
 0x81 /*ep*/,
 buf,
 length,
 read_callback,
 NULL/*cb data*/,
 5000/*timeout*/);

 return transfer;
}

Asynchronous API Example (cont'd)
static void read_callback(struct libusb_transfer *transfer)
{
 int res;

 if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
 /* Success! Handle data received */
 }
 else {
 printf("Error: %d\n", transfer->status);
 }

 /* Re-submit the transfer object. */
 res = libusb_submit_transfer(transfer);
 if (res != 0) {
 printf("submitting. error code: %d\n", res);
 }
}

Asynchronous API Example (cont'd)
 /* Create Transfers */
 for (i = 0; i < 32; i++) {
 struct libusb_transfer *transfer =
 create_transfer(handle, buflen);
 libusb_submit_transfer(transfer);
 }

 /* Handle Events */
 while (1) {
 res = libusb_handle_events(usb_context);
 if (res < 0) {
 printf("handle_events()error # %d\n",
 res);

 /* Break out of this loop only on fatal error.*/
 if (res != LIBUSB_ERROR_BUSY &&
 res != LIBUSB_ERROR_TIMEOUT &&
 res != LIBUSB_ERROR_OVERFLOW &&
 res != LIBUSB_ERROR_INTERRUPTED) {
 break;
 }
 }
 }

Asynchronous API

● This example creates and queues 32 transfers.
● When a transfer completes, the completed

transfer object is re-queued.
● All the transfers in the queue can

conceivably complete without a trip
to user space.

Asynchronous API

● For All types of Endpoint:
● The Host will not send any IN or

OUT tokens on the bus unless a
transfer object is active.

● The bus is idle otherwise
● Create and submit transfer objects

using the functions on the preceding
slides.

Performance

● For more information on USB performance, see
my ELC 2014 presentation titled USB and the
Real World
● http://www.signal11.us/oss/elc2014/
➢ Several devices and methods compared

API Summary

● All traffic is initiated by the Host
● In user space, this is done from libusb:

● Synchronous:
libusb_control_transfer()

libusb_bulk_transfer()

libusb_interrupt_transfer()

● Asynchronous:

libusb_create_transfer()
libusb_submit_transfer()

Libusb Lab

● Lab #3
● Create a user space application to talk to the

FunctionFS gadget device you created earlier
● Remember:

– Find the VID/PID from the script
– ep81 is bulk IN, ep01 is bulk OUT

● Time will probably not permit, so see
the solution provided.
– The solution is to be run on the

host, not on the embedded board

Alan Ott
alan@softiron.com
www.softiron.com

+1 407-222-6975 (GMT -5)

Slides and labs Copyright 2019 Alan Ott
Distributed under Creative Commons CC BY-SA 4.0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 56
	Slide 57
	Slide 58
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126

