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About the Presenter

● Platform Software at SoftIron
– Data center appliances (storage, transcoding)
– Ceph-based storage appliances
– OverDrive 3000/1000 ARM servers

● OSS Development
– Linux Kernel
– Firmware
– Training
– USB

● M-Stack USB Device Stack for PIC
– 802.15.4 wireless



  

USB Overview



  

Universal Serial Bus

● Universal Serial Bus (USB)
● Standard for a high-speed, bi-directional, low-cost, 

dynamic bus.
● Created by the USB Implementers Forum

(USB-IF)
● USB-IF is a non-profit corporation formed

by its member companies.
● USB-IF develops and owns copyrights

on the standards documents and
logos.
– http://www.usb.org 

http://www.usb.org/


  

USB Bus Speeds

● Low Speed
● 1.5 Mb/sec

● Full Speed
● 12 Mb/sec

● High Speed
● 480 Mb/sec

● SuperSpeed
● 5.0 Gb/sec

● SuperSpeed+
● 10Gb/sec



  

USB Bus Speeds

● Bus speeds are the rate of bit 
transmission on the bus

● Bus speeds are NOT data transfer speeds
● USB protocol can have significant 

overhead
● USB overhead can be mitigated if

your protocol is designed correctly.



  

USB Standards

● USB 1.1 – 1998
– Low Speed / Full Speed

● USB 2.0 – 2000
– High Speed added

● USB 3.0 – 2008
– SuperSpeed added

● USB Standards do NOT imply a
bus speed!

➢ A USB 2.0 device can be High
Speed, Full Speed, or Low Speed



  

Host and Device

● Host
● Often a PC, server, or embedded Linux system
● Responsible for control of the bus
● Responsible for initiating

communication with devices
● Responsible for enumeration of

attached devices.
● One host per bus



  

Host and Device

● Device
● Provide functionality to the host
● Many devices per bus
● Can connect through hubs

– Hubs are transparent to the device!
– Hubs are transparent to host APIs

● Hub drivers are built into the OS



  

The Bus

● USB is a Host-controlled bus
● Nothing on the bus happens without the

host first initiating it.
● Devices cannot initiate a transaction.
● The USB is a Polled Bus
● The Host polls each device, requesting

data or sending data.
● Devices cannot interrupt the host!



  

Terminology

● In/Out
● In USB parlance, the terms In and Out indicate 

direction from the Host perspective.
– Out: Host to Device
– In: Device to Host



  

Logical USB Device

Configuration 1

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Endpoint 2 IN

Interface 1

Endpoint 3 OUT

Endpoint 3 IN

Configuration 2

Interface 0

Endpoint 1 OUT

Endpoint 1 IN

Interface 1

Endpoint 2 OUT

Endpoint 2 IN

USB Device



  

USB Terminology

● Device – Logical or physical entity which 
performs a function.
● Thumb drive, joystick, etc.

● Configuration – A mode in which to
operate.
● Many devices have one configuration.
● Only one configuration is active at a

time.



  

USB Terminology

● Interface – A related set of Endpoints which 
present a single feature or function to the host.
● A configuration may have multiple interfaces
● All interfaces in a configuration are active

at the same time.
● Endpoint – A source or sink of data

● Interfaces often contain multiple
endpoints, each active all the
time.



  

Logical USB Device

● Important to note:
● A device can have multiple configurations.

– Only one active at a time
● A configuration can have multiple

interfaces.
– All active at the same time

● An interface can have multiple
endpoints.
– All active at the same time



  

Logical USB Device

● Most USB devices only have one Configuration.
● Only one configuration can be active at a 

time.
● All interfaces within a configuration

are active at the same time.
● This is how composite devices are

implemented.



  

Endpoint Terminology

● An Endpoint Number is a 4-bit integer associated 
with an endpoint (0-15).

● An endpoint transfers data in a single direction.
● An Endpoint Direction is either IN or OUT.
● An Endpoint Address is the combination

of an endpoint number and an endpoint
direction. Examples:
● EP 1 IN
● EP 1 OUT
● EP 3 IN



  

Endpoint Terminology

● Endpoint addresses are encoded with the 
direction and number in a single byte.
● Direction is the MSb (1=IN, 0=OUT)
● Number is the lower four bits.
● Examples:

– EP 1 IN = 0x81
– EP 1 OUT = 0x01
– EP 3 IN = 0x83
– EP 3 OUT = 0x03

● Tools like lsusb will show both



  

Endpoint Terminology

● Endpoint terminology is tricky (but important!)
● A device can have up to 32 endpoints.

– IN and OUT endpoints for numbers 0-15.

● The same Endpoint Number is used to
describe TWO endpoints.
● EP 1 IN and EP 1 OUT are separate

endpoints!
● There is no such thing as a

physical and logical endpoint.



  

Real-Life Example

Configuration 1

Interface 0
CDC Control

USB Device

Interface 1
CDC Data

EP 2 OUT

EP 2 IN

EP 1 IN

Interface 2
Vendor-Defined

EP 3 OUT

EP 3 IN

● Composite Device:
– Communication 

Device Class (CDC)
● Often virtual serial 

port
● Two interfaces are 

required for this 
class (control and 
data).

– Vendor-Defined 
class

● Can be used for 
generic data 
transfer



  

Descriptors

● USB is a self-describing bus
● Each USB device contains all the information 

required for the host to be able to communicate with 
it (drivers aside)
– No manual setting of baud rates, IRQ lines,

base addresses, etc.
– Plug devices in and they work

● Devices communicate this data to
the host using descriptors.



  

Descriptors

● The host will ask for a set of standard 
descriptors during enumeration, immediately 
upon a device being attached.

● The descriptors describe:
● The device identifier (vendor/product IDs)
● The logical structure of the device

– Configurations, interfaces, endpoints
● Which device classes are

supported (if any)



  

Descriptors

● Typically, devices contain at least:
● Device descriptor
● Configuration descriptor
● Interface descriptor
● Class-specific descriptors
● Endpoint descriptor

➢ Chapter 9 of the USB spec describes
these standard descriptors



  

Descriptors

● One tricky thing is that the host will request all 
descriptors which are part of a configuration as 
a single block.
● This includes Configuration, Interface,

class-specific, and endpoint descriptors
➢ The Get Descriptor (Configuration)

request means all descriptors of a
configuration



  

Device Descriptor
const struct device_descriptor this_device_descriptor =

{

        sizeof(struct device_descriptor), // bLength

        DESC_DEVICE, // bDescriptorType

        0x0200, // USB Version: 0x0200 = USB 2.0, 0x0110 = USB 1.1

        0x00, // Device class (0 = defined at interface level)

        0x00, // Device Subclass

        0x00, // Protocol

        EP_0_LEN, // bMaxPacketSize0 (endpoint 0 in/out length)

        0xA0A0, // Vendor ID (Fake VID!! Don't use this one!)

        0x0001, // Product ID

        0x0001, // device release (BCD 1.0)

        1, // Manufacturer String Index

        2, // Product String Index

        0, // Serial Number String Index

        NUMBER_OF_CONFIGURATIONS // NumConfigurations

};



  

Configuration Descriptor

/*  The Configuration Packet, in this example, consists
 *  of four descriptor structs. Note that there is
 *  a single configurarion, a single interface, and two
 *  endpoints.
 */

struct configuration_1_packet {

        struct configuration_descriptor  config;

        struct interface_descriptor      interface;

        struct endpoint_descriptor       ep;

        struct endpoint_descriptor       ep1_out;

};



  

Configuration Descriptor (cont'd)
static const struct configuration_1_packet configuration_1 =

{

        {

        // Members from struct configuration_descriptor

        sizeof(struct configuration_descriptor),

        DESC_CONFIGURATION,

        sizeof(configuration_1), // wTotalLength (length of the whole packet)

        1, // bNumInterfaces

        1, // bConfigurationValue

        2, // iConfiguration (index of string descriptor)

        0X80, // bmAttributes

        100/2,   // 100/2 indicates 100mA

        },



  

Configuration Descriptor (cont'd)
        {

        // Members from struct interface_descriptor

        sizeof(struct interface_descriptor), // bLength;

        DESC_INTERFACE,

        0x0, // InterfaceNumber

        0x0, // AlternateSetting

        0x2, // bNumEndpoints (num besides endpoint 0)

        0xff, // bInterfaceClass: 0xFF=VendorDefined

        0x00, // bInterfaceSubclass

        0x00, // bInterfaceProtocol

        0x02, // iInterface (index of string describing interface)

        },



  

Configuration Descriptor (cont'd)
        {

        // Members of the Endpoint Descriptor (EP1 IN)

        sizeof(struct endpoint_descriptor),

        DESC_ENDPOINT,

        0x01 | 0x80, // endpoint #1 0x80=IN

        EP_BULK, // bmAttributes

        64, // wMaxPacketSize

        1,   // bInterval in ms.

        },

        {

        // Members of the Endpoint Descriptor (EP1 OUT)

        sizeof(struct endpoint_descriptor),

        DESC_ENDPOINT,

        0x01, // endpoint #1 OUT (msb clear => OUT)

        EP_BULK, // bmAttributes

        64, // wMaxPacketSize

        1,   // bInterval in ms.

        },

};



  

Configuration Descriptor

● Preceding configuration descriptor described:
● One Configuration
● One interface (vendor defined)
● Two Bulk Endpoints

● See examples in usb_descriptors.c
in any of the M-Stack examples.



  

Endpoints

● Four types of Endpoints
● Control

– Bi-directional pair of endpoints
– Multi-stage transfers

● Transfers acknowledged on the software level
– Not just hardware!

● Status stage can return success/failure
– Used during enumeration
– Can also be used for application
– Mostly used for configuration items
– Most robust type of endpoint



  

Endpoints

● Interrupt
– Transfers a small amount of low-latency data
– Reserves bandwidth on the bus
– Used for time-sensitive data (HID).

● Bulk
– Used for large, time-insensitive data

(Network packets, Mass Storage,
etc).

– Does not reserve bandwidth on bus
● Uses whatever time is left over



  

Endpoints

● Isochronous
– Transfers a large amount of time-sensitive data
– Delivery is not guaranteed

● No ACKs are sent
– Used for Audio and Video streams

● Late data is as good as no data
● Better to drop a frame than to delay and force

a re-transmission



  

Endpoints

● Reserved Bandwidth
● Different endpoint types will cause the bus to 

reserve bandwidth when devices are connected.
– This is how guaranteed, bounded latency is 

implemented.

● Interrupt, Isochronous, and Control
endpoints reserve bandwidth.

● Bulk gets whatever bandwidth is
left unused each frame.



  

Endpoints

● Endpoint Length
● The maximum amount of data an endpoint can 

support sending or receiving per transaction.
● Max endpoint sizes:

– Full-speed:
● Bulk/Interrupt: 64
● Isoc: 1024

– High-Speed:
● Bulk: 512
● Interrupt: 3072
● Isoc: 1024 x3



  

Transactions

● Basic process of moving data to and from a 
device.

● USB is host-controlled. All transactions are 
initiated by the host.
● Much like everything else in USB

● A single transaction on an endpoint
can move bytes up to the
Endpoint Length



  

Transactions and Transfers

● Transaction
● Delivery of service to an endpoint
● Max data size: Endpoint length

● Transfer
● One or more transactions moving

information between host and device.
➢ Transfers can be large, even on

small endpoints!



  

Small Transfers

Transfer

Transaction

● The simplest transfer 
contains a single 
transaction.

● A transaction's size can 
be any length from zero 
bytes up to the
endpoint length.

Transfer

Transaction

Transfer



  

Large Transfers

Transfer

Transaction

Transaction

Transaction

Transaction

Transaction

● Transfers can contain 
more than one 
transaction.

● Transfers are ended by:
● A short transaction

OR
● When the desired 

amount of data has 
been transferred
➢ As requested

by the host



  

Linux USB Gadget



  

USB Gadget Subsystem

● In addition to providing the USB host 
subsystem you are familiar with, Linux also 
provides a device subsystem, called gadget.
● Gadget is a Linux-specific name.

● The gadget subsystem provides
a framework for creating USB
devices using a Linux system.
● …if the hardware supports it. Most

embedded USB controllers do.



  

USB Gadget Subsystem

● USB gadget subsystem provides:
● Framework
● USB Device Controller (UDC) drivers

– Hardware drivers
● USB device class implementations

– Software drivers (so to speak)
● Configuration through configfs

– Pseudo-filesystem for configuring
certain kernel services



  

Configfs

● Configfs is a pseudo-filesystem used to 
manage kernel objects.
● Pseudo-filesystems contain files which are

not present on any disk.
● The files are backed by objects in the

running kernel.
– Creating, deleting, or changing files and

directories will immediately have an
effect in the kernel

● Kernel callback functions are called



  

Configfs

● Configfs (cont'd)
● Data integrity is enforced by mechanism.

– Only valid file / directory names will be allowed
to be created

– Invalid values will not be allowed to be written
to files

– System calls (read/write/mkdir,etc) will
simply fail if invalid names or values are
used.

➢ This is far better than silent failure



  

USB Gadget

● To configure your USB Gadget:
● Mount configfs (if not already done)
● Create a directory for the gadget
● Set the vid/pid/strings
● Create a directory for the configuration
● Create a directory for the function

– Mass storage, HID, CDC/ACM, etc.
● Link the function to the configuration
● Enable the gadget



  

Simple Example – ACM Device
#!/bin/sh -ex

modprobe libcomposite

# Mount configfs locally
mkdir -p config
mount none config -t configfs

# Create the USB gadget configuration
mkdir -p config/usb_gadget/
cd config/usb_gadget/

# Create a gadget called g1
mkdir g1
cd g1

# Set the VID/PID/Strings
echo 0x1a0a >idVendor 
echo 0xbadd >idProduct
mkdir strings/0x409



  

Simple Example – ACM Device
# Set the VID/PID/Strings (cont'd)
echo 12345 >strings/0x409/serialnumber 
echo "Signal 11" >strings/0x409/manufacturer 
echo "Test" >strings/0x409/product 

# Create a configuration called c.1
mkdir configs/c.1
mkdir configs/c.1/strings/0x409
echo "Config1" >configs/c.1/strings/0x409/configuration

# Create a function (tty CDC/ACM) named usb0
mkdir functions/acm.usb0

# Link that function to configuration c.1
ln -s functions/acm.usb0 configs/c.1 

# Enable the USB device. Find the device
# name in /sys/class/udc/ .
echo musb-hdrc.0 >UDC



  

Simple Example - Device

● The above example will create a CDC/ACM 
device.
● A Linux host will identify this device as 
/dev/ttyACMn.

● The device/gadget side will create a
device node at /dev/ttyGS0.
– Read and write to/from this node from

the gadget to communicate with the
host.



  

Simple Example – ACM Device

● Lab #1
● On the device:

– Run ./acm_setup.sh

● On the host, run:
– dmesg

● Check for the new device name
– sudo screen /dev/ttyACMn

● On the device, run:
– echo “some text” >/dev/ttyGS1
– cat /dev/ttyGS1



  

Simple Example – ACM Device

● In theory, the device can be disabled, changed, 
and re-enabled.

● In practice, on many parts, this is fraught
with oopses, hangups, and other peril.

● Generally, you will want to setup your
gadget and leave it.



  

Simple Example – ACM Device

● The previous example is designed to be as 
simple as possible
● No source code, even!

● CDC/ACM is the best solution for
emulating a serial port, and that's all.

● Don't use CDC/ACM as an arbitrary
solution for connectivity
● It's inefficient
● Its burdensome on the end user



  

USB Gadget

● We showed ACM, but what other protocols are 
implemented?
● Start in Kernel source at:

Documentation/filesystems/gadget_configfs.txt

● Which references:
Documentation/ABI/testing

● Where you can: ls *usb-gadget*



  

USB Gadget

As of 4.15, these gadgets are documented:
configfs-usb-gadget               configfs-usb-gadget-phonet
configfs-usb-gadget-acm           configfs-usb-gadget-printer
configfs-usb-gadget-ecm           configfs-usb-gadget-rndis
configfs-usb-gadget-eem           configfs-usb-gadget-serial
configfs-usb-gadget-ffs           configfs-usb-gadget-sourcesink
configfs-usb-gadget-hid           configfs-usb-gadget-subset
configfs-usb-gadget-loopback      configfs-usb-gadget-tcm
configfs-usb-gadget-mass-storage  configfs-usb-gadget-uac1
configfs-usb-gadget-midi          configfs-usb-gadget-uac2
configfs-usb-gadget-ncm           configfs-usb-gadget-uvc
configfs-usb-gadget-obex

See these files in: Documentation/ABI/testing/



  

USB Gadget

● Briefly, some supported functions are:
● acm – CDC/ACM virtual serial port
● ecm/eem/ncm/phonet/rndis/subset – Virtual network 

device
● ffs – function filesystem

– Define a custom class from userspace
● hid – Human interface device
● loopback – for testing
● mass-storage – present drives to the host



  

USB Gadget

● Supported functions (cont'd):
● midi – musical instrument
● printer – printers
● serial – serial interface on the gadget side, but bulk 

interface on the host side
● sourcesink – source and sink for testing
● tcm – USB-attached SCSI
● uac1/2 – USB audio class, v1 and v2
● uvc - video



  

USB Gadget

● Find more information about each gadget in it's 
respective source file:

drivers/usb/gadget/function/f_*.c

● As usual in the kernel, documentation is hit-or-
miss



  

FunctionFS

● The gadget subsystem provides a function 
called FunctionFS, which allows complete 
configuration of the device through a user 
space application.

● The user space application provides:
● All the descriptors/strings

● Functionfs will then use the
descriptors to create device
nodes for each endpoint.



  

FunctionFS

● The user space application can then read and 
write to/from these device nodes to move data 
across the bus.

● This is better than using ACM because
there is no TTY layer in the way.
● The TTY layer will chop up your write()s
● Using FFS, one write() is one

USB transfer.
– This can get you close to wire speed



  

FunctionFS

● Modifying the previous script which (which 
creates an ACM device), use the ffs function 
instead of the acm function.

● After this, mount the FunctionFS
pseudo-filesystem for your device.
● This filesystem will give you an ep0

pseudo-file.
● Writing to this ep0 file with

descriptors will configure
your device



  

FunctionFS

● Start your user space program which will write 
to the ep0 file and configure the gadget.
● Based on your configuration (the descriptors) 

FunctionFS will then create a pseudo-file
for each endpoint.

● Enable the USB device
● Read/write the endpoint

pseudo-files to transfer data.



  

FunctionFS Example
# Setup the function, FunctionFS (named usb0)
mkdir functions/ffs.usb0
ln -s functions/ffs.usb0 configs/c.1

# Mount the function filesystem for usb0
cd ../../../
mkdir -p ffs
mount usb0 ffs -t functionfs

# From inside the mounted ffs directory, run your
# user space program and wait until it's started.
cd ffs
../ffs-test/ffs-test & # from the Linux kernel
sleep 3
cd ..

# Enable the USB device
echo musb-hdrc.0 >config/usb_gadget/g1/UDC



  

FunctionFS Example

● The kernel provides a sample user space 
program for FunctionFS.

● Unfortunately, it's more of a test program
than an example to learn from.
● Few comments
● Complex design and indirection
● Ambiguous naming

● Find it in:
tools/usb/ffs-test.c



  

FunctionFS Example

● The kernel sample creates:
● ep0 (unused for this example)
● ep1 – Bulk IN, 512 bytes (high speed)
● ep2 – Bulk OUT, 512 bytes (high speed)

● ep1 creates an endless source of data
● ep2 sinks an endless stream of data
● ep1/2 are address 0x81 and 0x80
● Also note that it's explicitly GPL.



  

FunctionFS Lab

● Lab #2
● Build the ffs-test program from the kernel

– cd ffs-test && make && cd ..

● Run the ./ffs_setup.sh script as root.
● Use lsusb and dmesg to observe the

device is detected on the host.
➢ You will communicate with this device

in the next lab



  

libusb



  

libusb

● libusb is a multi-platform host-side USB library
● Linux, BSD, OS X, Windows, others

● Runs in user space. No kernel
programming required.

● Easy to use synchronous API
● High-performance asynchronous API
● Supports all versions of USB



  

libusb

● A libusb host runs on a general purpose multi-
process OS.
● Sufficient permissions are required to open

a device
● Opening a device or interface may be

exclusive (only one process at a time).



  

libusb

● From a host perspective, the basic unit of a 
USB connection is the USB interface, not the
device.
● This is because devices can have multiple

interfaces, each of which may require a
different driver.

● Some composite devices may have
some standard interfaces (eg: CDC)
and also some vendor-defined
interfaces (eg: earlier example)



  

libusb Exampleint main(int argc, char **argv)
{
        libusb_device_handle *handle;
        unsigned char buf[64];
        int length = 64, actual_length, i, res;

        /* Init libusb */
        if (libusb_init(NULL))
                return -1;

        /* Open the device. This is a shortcut function. */
        handle = libusb_open_device_with_vid_pid(
                                        NULL, 0xa0a0, 0x0001);
        if (!handle) {
                perror("libusb_open failed: ");
                return 1;
        }

        /* Claim the interface for this process */
        res = libusb_claim_interface(handle, 0);
        if (res < 0) {
                perror("claim interface");
                return 1;
        }



  

libusb Example (cont'd)
        /* Initialize the data */
        my_init_data_function(buf, length);

        /* Send some data to the device */
        res = libusb_bulk_transfer(
                   handle, 0x01, buf, length, &actual_length, 5000);
        if (res < 0) {
                fprintf(stderr, "bulk transfer (out): %s\n",
                                             libusb_error_name(res));
                return 1;
        }

        /* Receive data from the device */
        res = libusb_bulk_transfer(handle, 0x81, buf, length, 
                                                  &actual_length, 5000);
        if (res < 0) {
                fprintf(stderr, "bulk transfer (in): %s\n", 
                                                libusb_error_name(res));
                return 1;
        }

        /* Process the data */
        my_process_received_data_function(buf, &actual_length);

        return 0;
}



  

libusb

● Observations:
● libusb, and libusb_bulk_transfer() deal 

with transfers, not transactions.
– The length can be arbitrarily long and longer

than the endpoint length.
– If so, libusb will behave as expected, initiating 

transactions until the required amount of
data has been transferred.

– If the device returns a short packet, the
transfer will end, and actual_length
will indicate the actual amount of
data received.



  

libusb

● Observations (cont'd):
● The libusb_bulk_transfer() function is used 

for both IN and OUT transfers
– The endpoint address (which contains the

direction) is used to determine whether it's an
IN or OUT transfer.



  

libusb

● Observations (cont'd):
● The interface must be claimed before

it can be used.
– If another process, or a kernel driver, is using

this interface, it will kick the other driver off.
– This can be good or bad depending on your

point of view.



  

libusb

● Observations (cont'd):
● The libusb functions take a timeout parameter.

– This timeout is how long the device has to
complete the transfer.

– It can be any value the host desires
● The host is in charge of the bus!

– 5 seconds is good for general purposes,
but the author recently made one over
90 seconds!

● It all depends on the use case!



  

libusb

● The simple example used libusb's 
synchronous API.
● Good for infrequent, single transfers.

– Easy to use, blocking, return code
● Bad for any kind of performance-critical

applications.
– Why? Remember the nature of the

USB bus....



  

● The USB Bus
● Entirely host controlled
● Device only sends data when the host

controller specifically asks for it.
● The host controller will only ask for data

when a transfer is active.
– libusb creates a transfer when (in our

example) libusb_bulk_transfer() is
called.

Synchronous API Issues



  

Synchronous API Issues

libusb_bulk_transfer()

ioctl(IOCTL_USBFS_SUBMITURB)

*HCI

Send IN token

Send data packet

Send ACK

DeviceHost

USB Host 
Controller 
Hardware USB Transaction



  

Synchronous API Issues

● USB Bus
● After one transfer completes, nothing happens on 

the bus until the next libusb transfer function is 
called.

● One might think it's good enough to call
libusb_bulk_transfer() in a tight loop.
– Tight loops are not tight enough!

● For short transfers, time spent in software
will be more than time spent in
hardware!

● All time spent in software is time a
transfer is not active!



  

Asynchronous API

● Fortunately libusb and the kernel provide an 
asynchronous API.
● Create multiple transfer objects
● Submit transfer objects to the kernel
● Receive a callback when transfers

complete
● When a transfer completes, there is

another (submitted) transfer
already queued.
● No downtime between transfers!



  

Asynchronous API Example
static struct libusb_transfer 
*create_transfer(libusb_device_handle *handle, size_t length) {
        struct libusb_transfer *transfer;
        unsigned char *buf;

        /* Set up the transfer object. */
        buf = malloc(length);
        transfer = libusb_alloc_transfer(0);
        libusb_fill_bulk_transfer(transfer,
                handle,
                0x81 /*ep*/,
                buf,
                length,
                read_callback,
                NULL/*cb data*/,
                5000/*timeout*/);

        return transfer;
}



  

Asynchronous API Example (cont'd)
static void read_callback(struct libusb_transfer *transfer)
{
        int res;
        
        if (transfer->status == LIBUSB_TRANSFER_COMPLETED) {
                /* Success! Handle data received */
        }
        else {
                printf("Error: %d\n", transfer->status);
        }

        /* Re-submit the transfer object. */
        res = libusb_submit_transfer(transfer);
        if (res != 0) {
                printf("submitting. error code: %d\n", res);
        }
}



  

Asynchronous API Example (cont'd)
        /* Create Transfers */
        for (i = 0; i < 32; i++) {
                struct libusb_transfer *transfer =
                        create_transfer(handle, buflen);
                libusb_submit_transfer(transfer);
        }

        /* Handle Events */
        while (1) {
                res = libusb_handle_events(usb_context);
                if (res < 0) {
                        printf("handle_events()error # %d\n",
                               res);

                        /* Break out of this loop only on fatal error.*/
                        if (res != LIBUSB_ERROR_BUSY &&
                            res != LIBUSB_ERROR_TIMEOUT &&
                            res != LIBUSB_ERROR_OVERFLOW &&
                            res != LIBUSB_ERROR_INTERRUPTED) {
                                break;
                        }
                }
        }



  

Asynchronous API

● This example creates and queues 32 transfers.
● When a transfer completes, the completed 

transfer object is re-queued.
● All the transfers in the queue can

conceivably complete without a trip
to user space.



  

Asynchronous API

● For All types of Endpoint:
● The Host will not send any IN or

OUT tokens on the bus unless a
transfer object is active.

● The bus is idle otherwise
● Create and submit transfer objects

using the functions on the preceding
slides.



  

Performance

● For more information on USB performance, see 
my ELC 2014 presentation titled USB and the 
Real World
● http://www.signal11.us/oss/elc2014/ 
➢ Several devices and methods compared



  

API Summary

● All traffic is initiated by the Host
● In user space, this is done from libusb:

● Synchronous:
libusb_control_transfer()

libusb_bulk_transfer()

libusb_interrupt_transfer()

● Asynchronous:

libusb_create_transfer()
libusb_submit_transfer()



  

Libusb Lab

● Lab #3
● Create a user space application to talk to the 

FunctionFS gadget device you created earlier
● Remember:

– Find the VID/PID from the script
– ep81 is bulk IN, ep01 is bulk OUT

● Time will probably not permit, so see
the solution provided.
– The solution is to be run on the

host, not on the embedded board



  

Alan Ott
alan@softiron.com 
www.softiron.com

+1 407-222-6975 (GMT -5)
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