
Getting started with Buildroot - Lab
Trevor Woerner, Togán Labs

March 9, 2019

These lab instructions are written for the Getting started with Buildroot tutorial of the Embedded Ap-
prentice Linux Engineer track. They are designed to work for the PocketBeagle hardware platform.

This lab is broken out into two separate paths:

• Basic Lab

• In-Depth Lab

Both labs start with the same resources, and both end up creating the same artifacts, but they both
take different routes. If you would like to get an image up-and-running on your board without
worrying too much about the details, take a look at the Basic Lab. If you’d like to know a little
more about what’s going on "under the hood", try the In-Depth Lab.

Both labs start with the same Initial Setup.

All the work for these labs occur on the host computer, not the target. A reasonably recent Linux
machine/VM is required for this work.

Initial Setup

Our first step is to obtain the buildroot meta-data. Normally this would be done by simply cloning
from buildroot’s git repository. But I’ve created a simple fork of upstream that contains little
tweaks to make this lab easier.

Therefore start by grabbing a tarball of this lab’s buildroot and unpacking it. Then, move into the
top-level directory of the unpacked tarball.

$ wget https://cm.e-ale.org/2019/SCaLE17x/buildroot/buildroot-e-ale.tar.xz
$ xz -d < buildroot-e-ale.tar.xz | tar xf -
$ cd buildroot-e-ale

If downloading buildroot-e-ale.tar.xz is taking too long, you can also run these exercises
with the buildroot-e-ale_SM.tar.xz tarball. But then your build will be slower.

Embedded Apprentice Linux Engineer - Getting started with Buildroot -
https://www.toganlabs.com

1

https://www.toganlabs.com


Basic Lab

A great place to start with any project is from a known location. In this case our buildroot already
knows what a pocketbeagle is, so we simply tell buildroot we want to build a basic image for this
board, then go ahead and build it.

$ make pocketbeagle_defconfig
$ make

The build will take a while (15 - 30 minutes, perhaps more depending on the speed of your Inter-
net connection or on the capabilities of your host machine).

Now jump ahead all the way to the Testing The Build section.

In-Depth Lab

What if buildroot didn’t know what a pocketbeagle is? In this lab we’re going to configure our
pocketbeagle build from scratch.

Creating a minimal configuration

We start by configuring our build:

$ make menuconfig

In the configuration, we’ll have to customize a number of options, as detailed below. Of course,
take this opportunity to navigate in all the options, and discover what Buildroot can do.

• In Target options

– Change Target architecture to ARM (little endian)

– Change Target architecture variant to Cortex-A8

• In Build options

– set global patch directories to board/pocketbeagle/patches/. This will allow us to
put patches for Linux, U-Boot other packages in subdirectories of board/pocketbeagle/
patches/.

• In Toolchain

– Change Toolchain type to External toolchain. By default, Buildroot builds its own toolchain,
but it can also use pre-built external toolchain. We’ll use the latter, in order to save build
time.

• In System configuration

Embedded Apprentice Linux Engineer - Getting started with Buildroot -
https://www.toganlabs.com

2

https://www.toganlabs.com


– you can customize the System host name and System banner if you wish. Keep the default
values for the rest.

• In Kernel

– Enable the Linux kernel, obviously!

– Patches will already be applied to the kernel, thanks to us having defined a global patch
directory above.

– Choose omap2plus as the Defconfig name

– We’ll need the Device Tree of the PocketBeagle, so enable Build a Device Tree Blob (DTB)

– And use am335x-pocketbeagle as the Device Tree Source file names

• In Target packages

– we’ll keep just Busybox enabled for now. In the next sections, we’ll enable more pack-
ages.

• In Filesystem images

– enable ext2/3/4 root filesystem

– select the ext4 variant

– you can also disable the tar filesystem image, which we won’t need.

• In Bootloaders

– enable U-Boot, and in U-Boot:

∗ Switch the Build system option to Kconfig: we are going to use a modern U-Boot, so
let’s take advantage of its modern build system!

∗ Keep version 2018.01

∗ set Custom U-Boot patches to board/pocketbeagle/patches/u-boot

∗ Use am335x_pocketbeagle as the Board defconfig

∗ The U-Boot binary format should be changed from u-boot.bin to u-boot.img.
Indeed, this second stage bootloader will be loaded by a first stage bootloader, and
needs to have the proper header to be loaded by the first stage.

∗ Enable Install U-Boot SPL binary image to also install the first stage bootloader. Its
name in U-Boot SPL/TPL binary image name(s) should be changed to MLO since that’s
how U-Boot names it, and how the AM335x expects it to be named.

Running the build

To start the build, you can run just make. But it’s often convenient to keep the build output in a
log file, so you can do:

Embedded Apprentice Linux Engineer - Getting started with Buildroot -
https://www.toganlabs.com

3

https://www.toganlabs.com


$ make 2>&1 | tee build.log

or alternatively use a wrapper script provided by Buildroot:

$ ./utils/brmake

The build will take a while.

The overall build takes quite some time, because the Linux kernel configuration omap2plus_
defconfig, which supports all OMAP2, OMAP3, OMAP4 and AM335x platforms has a lot of
drivers and options enabled. It would definitely be possible to make a smaller kernel configura-
tion for the Pocket Beagle, reducing the kernel size and boot time.

At the end of the build, the output is located in output/images. We have:

• MLO, the first stage bootloader

• u-boot.img, the second stage bootloader

• zImage, the Linux kernel image

• am335x-pocketbeagle.dtb, the Linux kernel Device Tree Blob

• rootfs.ext4, the root filesystem image

However, that doesn’t immediately give us a bootable SD card image. We could create it man-
ually, but that wouldn’t be really nice. So move on to the next section to see how Buildroot can
create the SD card image for you.

Creating a SD card image

To create a SD card image, we’ll use a tool called genimage, which provided a configuration file,
will output the image of a block device, with multiple partitions, each containing a filesystem.
See https://git.pengutronix.de/cgit/genimage/tree/README.rst for some docu-
mentation about genimage and its configuration file format.

genimage needs to be called at the very end of the build. To achieve this, Buildroot provides a
mechanism called post-image scripts, which are arbitrary scripts called at the end of the build. We
will use it to create a SD card image with:

• A FAT partition containing the bootloader images, the kernel image and Device Tree

• An ext4 partition containing the root filesystem

In addition, the U-Boot bootloader for the PocketBeagle is configured by default to load a file called
uEnv.txt to indicate what should be done at boot time. This file should also be stored in the first
partition of the SD card.

So, go back to make menuconfig, and adjust the following options:

• In System configuration

Embedded Apprentice Linux Engineer - Getting started with Buildroot -
https://www.toganlabs.com

4

https://git.pengutronix.de/cgit/genimage/tree/README.rst
https://www.toganlabs.com


– Set Custom scripts to run after creating filesystem images to board/pocketbeagle/
post-image.sh

• In Host utilities

– enable

∗ host dosfstools

∗ host genimage

∗ host mtools

mtools and dosfstools are needed because our genimage configuration includes the cre-
ation of a FAT partition.

Restart the build again. Once the build is finished, you should now have a sdcard.img file in
output/images/.

Storing our Buildroot configuration

Our Buildroot configuration is currently stored as .config, which is not under version control
and would be removed by a make distclean. So, let’s store it as a defconfig file:

$ make BR2_DEFCONFIG=configs/eale_pocketbeagle_defconfig savedefconfig

And then look at configs/eale_pocketbeagle_defconfig to see what your configuration
looks like.

Testing The Build

Working through either lab, if successful, you should find your *.img file waiting for you at
output/sdcard.img.

Embedded Apprentice Linux Engineer - Getting started with Buildroot -
https://www.toganlabs.com

5

https://www.toganlabs.com


Using Etcher or dd, flash this image to your SDcard. Insert the SDcard into your PocketBeagle
and apply power. Ideally you’ll have a serial console setup (i.e. minicom or screen) so you can
watch the progress.

Embedded Apprentice Linux Engineer - Getting started with Buildroot -
https://www.toganlabs.com

6

https://www.toganlabs.com

	Initial Setup
	Basic Lab
	In-Depth Lab
	Creating a minimal configuration
	Running the build
	Creating a SD card image
	Storing our Buildroot configuration

	Testing The Build

