# SPI/SPIDEV for IoT

Tom King

tk@amfmssb.com

cc by sa 3.0

Brought to you by:



- Linux Foundation Training has provided speaker funding
- ARM is subsidizing the manufacturing of the floral bonnet for LCA2019

# What is SPI?



- Serial Peripheral Interface
- Motorola
- de facto standard
- master-slave bus
- 4 wire bus
  - except when it's not
- no maximum clock speed
- "A glorified shift register"

http://wikipedia.org/wiki/Serial\_Peripheral\_Interface



#### Common uses of SPI

- Flash memory
- ADCs
- Chromium Embedded Controller
- LCD Controllers
- Sensors
  - Thermocouples and other high data rate devices

Advantages:

- Full Duplex in default mode
- Uses 4 pins (or 3 in some implementations)
- Low Processor overhead (even bit banged)
- No "unique address" needed (often just setting a GPIO pin to address)
- No "Protocol" to decode. (although can be used as transport for Protocols)

Disadvantages:

- Higher pin count than i2c
- No in-band addressing (need HW pins to address)
- No slave ack tha the data/command got to the intended recipient.
- No error checking
- Relatively short distances (often only onboard)

SPI Signals

- MOSI Master Output Slave Input
  - SIMO, SDI, DI, SDA
- MISO Master Input Slave Output
  SOMI, SDO, DO, SDA
- SCLK Serial Clock (Master output)
  SCK, CLK, SCL
- $\overline{SS}$  Slave Select (Master output)
- CSn, EN, ENB

#### **SPI** Master and Slave





#### Slave



By I, Cburnett, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=2302801

#### **Basic SPI Timing Diagram**



#### SPI Modes

- Modes are composed of two clock characteristics
- CPOL clock polarity
  - $\circ$  0 = clock idle state low
  - 1 = clock idle state high
- CPHA clock phase
  - 0 = data latched falling, output rising
  - 1 = data latched rising, output falling

SPI Modes Cont'd

| Mode | CPOL | СРНА |
|------|------|------|
| 0    | 0    | 0    |
| 1    | 0    | 1    |
| 2    | 1    | 0    |
| 3    | 1    | 1    |

#### SPI Mode Timing - CPOL 0



Clock idle low, data latched on falling edge

#### SPI Mode Timing - CPOL 1



Clock idle high, data latched on rising edge

Let's look at an example together:

https://en.wikipedia.org/wiki/Serial\_Peripheral\_Interface#Example\_of\_bit-banging\_ the\_master\_protocol

### SPI can be more complicated

- Multiple SPI Slaves
  - One chip select for each slave
- Daisy Chaining
  - Inputs to Outputs
  - Chip Selects
- Dual or Quad SPI (or more lanes)
  - Implemented in high speed SPI Flash devices
  - Instead of one MISO, have N MISOs
  - N times bandwidth of traditional SPI
- 3 Wire (Microwire) SPI
  - Combined MISO/MOSI signal operates in half duplex



**Multiple SPI Slaves** 

## SPI Daisy Chain



By en:User:Cburnett - Own workThis W3C-unspecified vector image was created with Inkscape., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1482275

#### SPI Mode Timing - Multiple Slaves



Conclusions:

- Old Reliable Bus
- Still quite popular
- New variants are making it even more useful (QSPI, etc)