LCAU 2019 - SPI/SPIDEV for IoT

SPI/SPIDEV for IoT

Tom King

tk@amfmssb.com

cc by sa 3.0
LCAU 2019 - SPI/SPIDEV for IoT

Brought to you by:

- Linux Foundation Training has provided speaker funding
- ARM is subsidizing the manufacturing of the floral bonnet for LCA2019
What is SPI?

- Serial Peripheral Interface
- Motorola
- de facto standard
- master-slave bus
- 4 wire bus
 - except when it’s not
- no maximum clock speed
- “A glorified shift register”

http://wikipedia.org/wiki/Serial_Peripheral_Interface
Common uses of SPI

- Flash memory
- ADCs
- Chromium Embedded Controller
- LCD Controllers
- Sensors
 - Thermocouples and other high data rate devices
LCAU 2019 - SPI/SPIDEV for IoT

Advantages:

- Full Duplex in default mode
- Uses 4 pins (or 3 in some implementations)
- Low Processor overhead (even bit banged)
- No “unique address” needed (often just setting a GPIO pin to address)
- No “Protocol” to decode. (although can be used as transport for Protocols)
LCAU 2019 - SPI/SPIDEV for IoT

Disadvantages:

● Higher pin count than i2c
● No in-band addressing (need HW pins to address)
● No slave ack that the data/command got to the intended recipient.
● No error checking
● Relatively short distances (often only onboard)
LCAU 2019 - SPI/SPIDEV for IoT

SPI Signals

- MOSI - Master Output Slave Input
 - SIMO, SDI, DI, SDA
- MISO - Master Input Slave Output
 - SOMI, SDO, DO, SDA
- SCLK - Serial Clock (Master output)
 - SCK, CLK, SCL
- SS - Slave Select (Master output)
- CSn, EN, ENB
LCAU 2019 - SPI/SPIDEV for IoT

SPI Master and Slave
LCAU 2019 - SPI/SPIDEV for IoT

Master

Slave

Memory

0 1 2 3 4 5 6 7

SCLK

MOSI

MISO

0 1 2 3 4 5 6 7

By I, Cburnett, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2302801
Basic SPI Timing Diagram
LCAU 2019 - SPI/SPIDEV for IoT

SPI Modes

- Modes are composed of two clock characteristics
- CPOL - clock polarity
 - 0 = clock idle state low
 - 1 = clock idle state high
- CPHA - clock phase
 - 0 = data latched falling, output rising
 - 1 = data latched rising, output falling
LCAU 2019 - SPI/SPIDEV for IoT

SPI Modes Cont’d

<table>
<thead>
<tr>
<th>Mode</th>
<th>CPOL</th>
<th>CPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
SPI Mode Timing - CPOL 0

SPI Write Mode 0

Clock idle low, data latched on rising edge

SPI Write Mode 1

Clock idle low, data latched on falling edge
SPI Mode Timing - CPOL 1

Clock idle high, data latched on falling edge

Clock idle high, data latched on rising edge
Let’s look at an example together:

SPI can be more complicated

- **Multiple SPI Slaves**
 - One chip select for each slave
- **Daisy Chaining**
 - Inputs to Outputs
 - Chip Selects
- **Dual or Quad SPI (or more lanes)**
 - Implemented in high speed SPI Flash devices
 - Instead of one MISO, have N MISOs
 - N times bandwidth of traditional SPI
- **3 Wire (Microwire) SPI**
 - Combined MISO/MOSI signal operates in half duplex
LCAU 2019 - SPI/SPIDEV for IoT

Multiple SPI Slaves
SPI Daisy Chain

By en:User:Cburnett - Own workThis W3C-unspecified vector image was created with Inkscape., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1482275
LCAU 2019 - SPI/SPIDEV for IoT

SPI Mode Timing - Multiple Slaves
Conclusions:

- Old Reliable Bus
- Still quite popular
- New variants are making it even more useful (QSPI, etc)