
IoT Security
Terri Oda



IoT
The S Stands for Security



But, Terri, there’s no S in IoT.



Exactly.











What makes IoT security challenging?



1. Things are small



Small processors. Small memory. 
Small disk. Small physical footprint. 
Small bandwidth. Small teams. 
Small code. Small part count. Small 
development time. Small price. 
Small performance. Small minds. 



2. Things are experimental



“We don't know how this will be used”
“We’ll use this opportunity to use a new 
tool/framework/programming language”

“While we've got a small team, it’s a 
good time to try agile (for the first time)”

“Run this project like we're a startup”
“Let’s just throw it out there and see 

what sticks”



3. Things are exposed



“Everything’s on the internet!”
“We’re going to toss sensors in the forest”
“Your light bulb can talk to your phone and 

your doorbell and your smoke alarm…”
“This is going in a car.”

“For usability, we need this to connect and 
work right away, no password.”

https://www.shodan.io/

https://www.shodan.io/


We’re using resources like it’s 1980.

But we’re doing it all differently (so we 
can’t use all the tools from the past)

And then we’re putting it in stuff that can 
kill people.



(I’m not going to take you to 1980 for the 
hands on portion.)



Reminder: 
Ethical security requires consent.



Set up Mission 0 from 
https://github.com/terriko/sparklesecurity
on your raspi (if you haven’t already)
and then try at least Mission 1.

https://github.com/terriko/sparklesecurity


[Hands on portion ~ 20 minutes]



Choosing Better Open 
Source

Special IoT Edition



Developers are not choosing 
bad packages because they 
are malicious or stupid.



● Does it meet our needs now and will it do so in the future?
● Does it meet our licensing requirements?
● It is small enough for our desired footprint?
● Is it what others in the industry are using?
● Does it have a good tutorial so we can get someone 

ramped up to integrate it quickly?



Small processors. Small memory. 
Small disk. Small physical footprint. 
Small bandwidth. Small teams. 
Small code. Small part count. Small 
development time. Small price. 
Small performance.



It’s easy to see how security winds up 
taking a back seat.



How do we avoid that?



Simple Security Risk Assessment
1. Take a first look. Are there warning signs?
2. Check the contributors/activity.
3. Check how they handle security issues.
4. Look at the test suite.
5. Be aware of assumptions.



Step 1:
Take a First Look



First Look: key questions
● Have you read the readme, first pages of the website, and other readily 

available introductory information?
● Does the code appear to be held to good software development standards?
● Is this code used professionally or is it a hobby project?
● Are there any signs that there are known issues with this code?
● Does this code solve a personal problem for the developer, or is it robust 

enough for other use cases?
● Is this code active or is it an abandoned archive?
● Are there any warning signs?



The developers tell you to use something else
“use TweetNaCl.js (a TweetNaCl port 
to JavaScript) rather than this 
implementation, which is more likely to 
perform in constant time and has likely 
seen more eyes for review/audits.”

*******************************DISCLAIMER*******************************
This code is reference software only and is not feature complete. It 
should not be used in commercial products at this time. Intel makes 
no claims for the quality or completeness of this code



The developers tell you to use something else
“use TweetNaCl.js (a TweetNaCl port 
to JavaScript) rather than this 
implementation, which is more likely to 
perform in constant time and has likely 
seen more eyes for review/audits.”

*******************************DISCLAIMER*******************************
This code is reference software only and is not feature complete. It 
should not be used in commercial products at this time. Intel makes 
no claims for the quality or completeness of this code



Code of dubious provenance



Code of dubious provenance



Code of Dubious Quality

“CryptoJS is a project that I enjoy and 
work on in my spare time, but 
unfortunately my 9-to-5 hasn’t left me 
with as much free time as it used to. I’d 
still like to continue improving it in the 
future, but I can’t say when that will be.”

“Opencsv was 
developed in a 
couple of hours 
by Glen Smith.”



Code of Dubious Quality

“CryptoJS is a project that I enjoy and 
work on in my spare time, but 
unfortunately my 9-to-5 hasn’t left me 
with as much free time as it used to. I’d 
still like to continue improving it in the 
future, but I can’t say when that will be.”

“Opencsv was 
developed in a 
couple of hours 
by Glen Smith.”



Known Flaws

“This project was made as a “proof of concept” 
demonstration of how to detect apps on an iOS device, 
from early 2011. Since then, it has been extensively 
used in many apps, to the point where Apple made the 
decision to ban the excessive use of - canOpenURL:, 
the method which iHasApp relies upon to determine app 
installation. As a result, using a list of URL schemes for 
app detection is no longer a viable method.”

https://www.cvedetails.com/

https://www.cvedetails.com/


Very Old Code



Red Flag Words

“cJSON aims to be the 
dumbest possible 
parser that you can get 
your job done with.”



Red Flag Words

● “Elegant,” means to a security person: “We didn’t handle 
any edge cases.”

● “Lightweight,” means: “We cut out all the input validation.”
● “Fast,” means: “We cut out all the error checking.”
● “We wrote a new parser,” means all of the above.



Step 2:
Check the 
Contributors & Activity



Contributors: Key Questions

● How many contributors are active and significant?
● Are the key maintainers doing this as part of a job or a hobby?
● Is this code actively maintained, or is it abandoned?
● How many checkins were there in the past year?
● Are issues being fixed on a regular basis?
● Who is doing the code reviews?
● Who takes over if the main maintainer gets sick?











Step 3:
Check how they 
handle security issues



Security Issues: Key Questions

● Is there a clear way to report security vulnerabilities?
○ An ideal procedure should involve a way to keep the vulnerability 

secret until a fix is found.
○ Typical good solutions can include sending an email to a special 

security mailing list or a bug tracker with special “security” flag.
○ If there is no way to report security issues specifically, assume the 

project has not thought about it (this is a bad sign).
● Is there evidence that vulnerabilities are fixed in a timely manner?
● Is there any explanation of what happens when a security issue is 

reported?



A Couple Good Examples

http://apache.org/security/

https://intel.com/security

http://apache.org/security/
https://intel.com/security


No policy?
Try searching for open security issues in the bug tracker/mailing lists



Step 4:
Look at the test suite



Test suite: Key questions

● Does this test suite cover bad behaviour?
● How comprehensive is this test suite?
● Do all tests pass?
● Is there continuous integration for tests?



Step 5:
Be Aware of 
Assumptions













SECTION GRADE GRADING GUIDELINES

First look  A - Mentions security audit or other proactive security activity.
B - No major warning signs, and code is used professionally.
C - No major warning signs, but not widely used or not well-supported.
D - Code has minor warning signs that need to be investigated in more detail.
F - Code has known issues, major warning signs, or is abandoned

Contributors 
and activity

 A - At least five significant, active contributors.
B - More than two significant, active contributors.
C - Only one major contributor who is active.
D - Project has been inactive for nine months or less.
F - Project has been inactive for more than one year.

Security 
issues

 A - Project has had previous security issues and handled them quickly and well. Bonus if they also mention doing proactive 
security such as fuzz testing, static analysis, or security audits.
B - Project has a plan for handling security issues but hasn’t had to use it much yet.
C - Project does not have a plan for security issues but at least has an active bug tracker and issues get resolved.
D - Project does not seem to resolve many open bugs.
F - Project has open security issues that are not in the process of being resolved.

Test suite  A - Project has test suite with good coverage of positive and negative test cases set up as part of continuous integration, 
and test results are published for each build.
B - Project has test suite with good coverage but no continuous integration.
C - Test suite mostly covers positive test cases; very few or no error cases.
D - Test suite has very low coverage or is only a few examples.
F - No test suite.



First 
look

 A - Mentions security audit or other proactive security activity.
B - No major warning signs, and code is used professionally.
C - No major warning signs, but not widely used or not 
well-supported.
D - Code has minor warning signs that need to be investigated in 
more detail.
F - Code has known issues, major warning signs, or is abandoned



Contributor
s and 
activity

 A - At least five significant, active contributors.
B - More than two significant, active contributors.
C - Only one major contributor who is active.
D - Project has been inactive for nine months or less.
F - Project has been inactive for more than one year.



Security 
issues

 A - Project has had previous security issues and handled them 
quickly and well. Bonus if they also mention doing proactive security 
such as fuzz testing, static analysis, or security audits.
B - Project has a plan for handling security issues but hasn’t had to 
use it much yet.
C - Project does not have a plan for security issues but at least has 
an active bug tracker and issues get resolved.
D - Project does not seem to resolve many open bugs.
F - Project has open security issues that are not in the process of 
being resolved.



Test 
suite

 A - Project has test suite with good coverage of positive and 
negative test cases set up as part of continuous integration, and test 
results are published for each build.
B - Project has test suite with good coverage but no continuous 
integration.
C - Test suite mostly covers positive test cases; very few or no error 
cases.
D - Test suite has very low coverage or is only a few examples.
F - No test suite.



Activity:
Try a risk assessment on a random open source 
package!

Use one you care about, or go to 
https://github.com/trending

(be aware, those aren’t always appropriate, just scroll on if they’re sketchy)
Scorecard: 
https://github.com/sec-princess/WWCode-OSS-Study-Night-2
0180927/blob/master/OSS%20Component%20Scorecard.pdf 

https://github.com/trending
https://github.com/sec-princess/WWCode-OSS-Study-Night-20180927/blob/master/OSS%20Component%20Scorecard.pdf
https://github.com/sec-princess/WWCode-OSS-Study-Night-20180927/blob/master/OSS%20Component%20Scorecard.pdf


SECTION GRADE GRADING GUIDELINES

First look  A - Mentions security audit or other proactive security activity.
B - No major warning signs, and code is used professionally.
C - No major warning signs, but not widely used or not well-supported.
D - Code has minor warning signs that need to be investigated in more detail.
F - Code has known issues, major warning signs, or is abandoned

Contributors 
and activity

 A - At least five significant, active contributors.
B - More than two significant, active contributors.
C - Only one major contributor who is active.
D - Project has been inactive for nine months or less.
F - Project has been inactive for more than one year.

Security 
issues

 A - Project has had previous security issues and handled them quickly and well. Bonus if they also mention doing proactive 
security such as fuzz testing, static analysis, or security audits.
B - Project has a plan for handling security issues but hasn’t had to use it much yet.
C - Project does not have a plan for security issues but at least has an active bug tracker and issues get resolved.
D - Project does not seem to resolve many open bugs.
F - Project has open security issues that are not in the process of being resolved.

Test suite  A - Project has test suite with good coverage of positive and negative test cases set up as part of continuous integration, 
and test results are published for each build.
B - Project has test suite with good coverage but no continuous integration.
C - Test suite mostly covers positive test cases; very few or no error cases.
D - Test suite has very low coverage or is only a few examples.
F - No test suite.


