loT Security

Terri Oda

loT
The S Stands for Security

But, Terri, there's no S in loT.

Exactly.

®
open source

Initiative

What makes loT security challenging?

1. Things are small

Small processors. Small memory.
Small disk. Small physical footprint.
Small bandwidth. Small teams.

Small code. Small part count. Small
development time. Small price.
Small performance. Small minds.

2. Things are experimental

“We don't know how this will be used”
“We’'ll use this opportunity to use a new
tool/framework/programming language”

“While we've got a small team, it's a

good time to try agile (for the first time)”
"Run this project like we're a startup”
“Let’s just throw it out there and see
what sticks”

3. Things are exposed

“Everything’s on the internet!”
“We're going to toss sensors in the forest”
“Your light bulb can talk to your phone and

your doorbell and your smoke alarm...”

“This is going in a car.”
“For usability, we need this to connect and
work right away, no password.”
https://www.shodan.io/

https://www.shodan.io/

We're using resources like it's 1980.

But we're doing it all differently (so we
can't use all the tools from the past)

And then we’'re putting it in stuff that can
Kill people.

(I'm not going to take you to 1980 for the
hands on portion.)

Reminder:

Ethical security requires consent.

Set up Mission 0 from
https://qgithub.com/terriko/sparklesecurity
on your raspi (if you haven't already)
and then try at least Mission 1.

https://github.com/terriko/sparklesecurity

[Hands on portion ~ 20 minutes]

Choosing Better Open

Source
Special loT Edition

Developers are not choosing

bad packages because they
are malicious or stupid.

Does it meet our needs now and will it do so in the future?
Does it meet our licensing requirements?

It is small enough for our desired footprint?

Is it what others in the industry are using?

Does it have a good tutorial so we can get someone
ramped up to integrate it quickly?

Small processors. Small memory.
Small disk. Small physical footprint.
Small bandwidth. Small teams.

Small code. Small part count. Small
development time. Small price.
Small performance.

It's easy to see how security winds up
taking a back seat.

How do we avoid that?

ok wbdb-=

Simple Security Risk Assessment

. Take a first look. Are there warning signs?

Check the contributors/activity.

Check how they handle security issues.
Look at the test suite.

Be aware of assumptions.

Step 1:
Take a First Look

First Look: key questions

e Have you read the readme, first pages of the website, and other readily
available introductory information?

Does the code appear to be held to good software development standards?
Is this code used professionally or is it a hobby project?

Are there any signs that there are known issues with this code?

Does this code solve a personal problem for the developer, or is it robust
enough for other use cases?

Is this code active or is it an abandoned archive?

e Are there any warning signs?

The developers tell you to use something else

“‘use TweetNaCl.js (a TweetNaCl port
to JavaScript) rather than this
implementation, which is more likely to
perform in constant time and has likely
seen more eyes for review/audits.”

/*******************************D I SCLA' M E R******************************* \

This code is reference software only and is not feature complete. It
should not be used in commercial products at this time. Intel makes
no claims for the quality or completeness of this code

o J

The developers tell you to use something else

“use TweetVE':, =
to JavaScrif
implementa

perform in ¢
seen more ¢

kkkkkkkkkkkkk \

mplete. It
1tel makes

J

[qUICKMEMESCOmn)

Code of dubious provenance

Authors Recent - News - Mirrors * FAQ ° Feedback
C P Nm All v | CPAN Search

Michael Firestone > Tivoli-AccessManager-Admin permalink

Tivoli-AccessManager-Admin
This Release Tivoli-AccessManager-Admin-1.11 [Download] [Browse] 13 Dec 2006 ** UNAUTHORIZED RELEASE **
‘Other Releases | Tivoli-AccessManager-Admin-1.10 - 13 Dec 2006 v | Goto
Links [Discussion Forum] [View/Report Bugs] [Dependencies] [Other Tools]

CPAN Testers | PASS (2) FAIL (20) UNKNOWN (403) [View Reports | [Per/Platform Version Matrix]
(0 Reviews) [Rate this distribution]

e unknown

jles| CHANGES MANIFEST README
Makefile.PL META.yml

Tivoli::AccessManager::Admin UNAUTHORIZED 1.11
TIVOII :AccessManager: Admln ACL 1.1

I3 i 3 1.1
Tivoli::AccessM er: in:: | 1.1

Tivali*AccessManaaner- Admin' ' Context 11

Code of dublous . rovenance

se Tivoli-Ag
Tivoli-Ac

i [Discussi d
| PASS (2)

""""‘f; unknow:
CHANG
Makefild

-L—\r e ’
S nope. =

Modules

Tivoli::AccessManager::Ad UNAUTHORIZED 1.11
Tivoli::AccessManager::Ad 1.11
Tivoli::AccessManager::Ad 1.1
Tivoli::Acce anager::Ad 1.11

Tivali*AccessMananer-Ad

11%

Code of Dubious Quality

-

“Opencsv was
developed in a
couple of hours
“CryptodS is a project that | enjoy and by Glen Smith.”
work on in my spare time, but _

unfortunately my 9-to-5 hasn't left me
with as much free time as it used to. I'd
still like to continue improving it in the
future, but | can’t say when that will be.”

Code of Dubious Quality

“CryptodS is —— ‘ Smith.”
work on in m

unfortunately
with as much
still like to co
future, but | c

Known Flaws

“This project was made as a “proof of concept”
demonstration of how to detect apps on an iOS device,
from early 2011. Since then, it has been extensively
used in many apps, to the point where Apple made the
decision to ban the excessive use of - canOpenURL:,
the method which iHasApp relies upon to determine app
installation. As a result, using a list of URL schemes for
app detection is no longer a viable method.”

https://www.cvedetails.com/ J

https://www.cvedetails.com/

Very Old Code

Watt-32 tcp/ip Homepage

This page contains my port of Waterloo tcp/ip (WatTCP). Watt-32 is an enhanced version of Geof Cooper’s TinyTCP and Erick Engelke’s WatTCP. The latest version is dated November
1999 with features integrated into Watt-32.

Watt-32 is a library for making networked TCP/IP programs in the language of C and C++ under DOS and Windows-NT. Both 16-bit real-mode and 32-bit protected-mode is supported.
For DOS, Watt-32 requires a packet-driver (PKTDRVR) to access the data-link layer (Ether-PPP, SLIP or Ethernet. Token-Ring is un-tested). With the correct packet-driver, it will run
under all versions of Windows too. | highly recommend SwsVpkt which works much faster than Dan Lanciani's NDIS3PKT. With the SwsVpkt or NDIS3PKT drivers one can connect to
Windows services (on the same machine) from a DOS-box too.

For Windows, WinPcap and NPF.SYS are required. Note that Windows 95, 98 and ME are not supported.

The name Watt-32 was chosen to signal the emphasis on 32-bit platforms (Although 16-bit compiler are also supported). What, besides embedded systems, is DOS good for these days if

not running high-performance 32-bit programs. And the embedded market is booming; with the price of PC-104/Ethernet cards, Watt-32 could be used in a lot of fancy boxes. How
about an IP-telephone, MP3 home-player or an Internet Radio?

Red Flag Words

“cJSON aims to be the
dumbest possible
parser that you can get
your job done with.”

Red Flag Words

e “Elegant,” means to a security person: “We didn’t handle
any edge cases.”

e “Lightweight,” means: "We cut out all the input validation.”

e “Fast,” means: “We cut out all the error checking.”

e “We wrote a new parser,” means all of the above.

Step 2:
Check the
Contributors & Activity

Contributors: Key Questions

How many contributors are active and significant?

Are the key maintainers doing this as part of a job or a hobby?
Is this code actively maintained, or is it abandoned?

How many checkins were there in the past year?

Are issues being fixed on a regular basis?

Who is doing the code reviews?

Who takes over if the main maintainer gets sick?

. kennethreitz / tablib ®©Watch 9 JStar 1870 ¥ Fork 265

<> Code ‘) Issues 26 1'] Pull requests § 2= Wiki 4~ Pulse |1 Graphs

Python Module for Tabular Datasets in XLS, CSV, JSON, YAML, &c. http://python-tablib.org

(p) 882 commits U 1 branch © 32 releases 61 contributors
Branch: master ~ New puill reques! Newfile Findfile HTTPS. https://github.com/kenn @. Download ZIP
. iurisilvio Merge pull request #236 from candy0427/master «.. Latest commit b35d505 8 days ago
I docs [docs] Update variable name in tuto 14 days ago

i tablib ovthon 3 fix: mab filter to ifilter a month aao

Commits Code frequency

Jul 11, 2010 — Apr 1, 2016

Contributions to master, excluding merge commits

; lhxm

| kennethreitz
W] 574 commits 136,180 ++ 89,344 —

Ibeltrame
13 commits ' 939 «+ 76 -

Punch card

Network

#1

#3

Members

durden
13 commits

iurisilvio
' 13 commits

47 —-

76 -

Contributions. Commits ~

#2

Contributions: Commits v

Apr 3, 2016 — Dec 6, 2016

Contributions to master, excluding merge commits

May June July August September October November December
kaccardi #1 sameo #2
250 commits / 26,220 ++ / 9,459 -- 242 commits / 62,518 =+ / 7,505 --

May July September November July September November

s markdryan #3 ' tpepper #4
222 commlts 267,773 ++ /7,690 -- < 208 commits / 11,095 ++ / 6,352 --

MA“:: | AA_‘E e

Jul 10, 2005 — Dec 6, 2016

Contributions to master, excluding merge commits

200
150
100

50

2006 2007 2008 2009 2010

= adrianholovaty #1

2,769 commits / 146,712 ++ / 81,008 --

N YV O RN ‘ Oy R IR :
2006 2008 2010 2012 2014 2016
@ malcolmt #3

1,865 commits / 328,555 ++ / 171,622 --

Contributions: Commits v

2011 2012 2013 2014 2016

.timgraham #2

2,479 commits / 101,784 ++ / 146,753 --

2006 2008 2010 2012 2014 2016
freakboy3742 24
1,709 commits / 198,591 ++ /95,002 --

Step 3:
Check how they
handle security issues

Security Issues: Key Questions

e Is there a clear way to report security vulnerabilities?
o An ideal procedure should involve a way to keep the vulnerability
secret until a fix is found.
o Typical good solutions can include sending an email to a special
security mailing list or a bug tracker with special “security” flag.
o If there is no way to report security issues specifically, assume the
project has not thought about it (this is a bad sign).
e |[s there evidence that vulnerabilities are fixed in a timely manner?

e Is there any explanation of what happens when a security issue is
reported?

A Couple Good Examples

http://apache.org/security/
https://intel.com/security

http://apache.org/security/
https://intel.com/security

No policy?

Try searching for open security issues in the bug tracker/mailing lists

£ DCRCEC BIRGTM DI 2 :) ACREDIR =
- C |8 sitHub, Inc. us)] https://github.com/grafana/grafana/issues?utf= v &q=is issue%20is%3Aopen%20security wHM@®@'-9 8@ 0=

i Apps dr Bookmarks () Intel [W3C () crosswalk () OpenStack (3 Security news 4§k CBCcalisten [} UTCchart (W] JF LightRail () 1oT/Ostro () Choir () gsoc b Snyk » [Other bookmarks

= o -
o This repository Pull requests Issues Gist A+ l -
. grafana / grafana OWatch~> 681 #rStar 11807 YFork 1801
Code @ lssues 690 Pull requests 57 Jii| Projects 1 Wiki 4~ Pulse Graphs

Filters » is:issue issopen security Labels Milestones -

B3 Clear current search query, filters, and sorts

@® 16 Open v 71 Closed Author + Labels + Milestones » Assignee~ Sort~
@ [Elasticsearch]: Enforce ES index setting, limit requests to specific index 'comp: security =1
P3:important state: help wanted (PR)

25831

pened 25 days ago by wieese
) Github login/signup is not working 26

25683 n 9 by marcosnils l1of3

(@ [Feature Request] More information about API keys comp: backend/auth P3: important
state: help wanted (PR) type: feature request

2496 " 0 Ma RichiH

(1) [Feature Request] User Authentication via SAML comp: backend/auth type: feature request a3
24780 opened on Apr 21 by utkarshemu
7) Feature Request : Install plugins directly from web interface at /plugins comp: plugins 4

type: feature request »

Step 4.
Look at the test suite

Test suite: Key questions

Does this test suite cover bad behaviour?
How comprehensive is this test suite?

Do all tests pass?

Is there continuous integration for tests?

Step 5:
Be Aware of
Assumptions

Popularity

does not
equal security

\ [o known
vulnerabilities

does not equal
" security

¥
Good packages

do not guarantee .

¥ good dependencies

,‘A\““‘,
A 7 N\
A‘:j\\x/ /
L'\\ ‘\»1\',/11)

Package managers
don't always imply

hlgh quality

Good security ’@E

reporting does not
guarantee action

SECTION GRADE

First look

Contributors
and activity

Security
issues

Test suite

GRADING GUIDELINES

A - Mentions security audit or other proactive security activity.

B - No major warning signs, and code is used professionally.

C - No major warning signs, but not widely used or not well-supported.

D - Code has minor warning signs that need to be investigated in more detail.
F - Code has known issues, major warning signs, or is abandoned

A - At least five significant, active contributors.

B - More than two significant, active contributors.

C - Only one maijor contributor who is active.

D - Project has been inactive for nine months or less.
F - Project has been inactive for more than one year.

A - Project has had previous security issues and handled them quickly and well. Bonus if they also mention doing proactive
security such as fuzz testing, static analysis, or security audits.

B - Project has a plan for handling security issues but hasn’t had to use it much yet.

C - Project does not have a plan for security issues but at least has an active bug tracker and issues get resolved.

D - Project does not seem to resolve many open bugs.

F - Project has open security issues that are not in the process of being resolved.

A - Project has test suite with good coverage of positive and negative test cases set up as part of continuous integration,
and test results are published for each build.

B - Project has test suite with good coverage but no continuous integration.

C - Test suite mostly covers positive test cases; very few or no error cases.

D - Test suite has very low coverage or is only a few examples.

F - No test suite.

First A - Mentions security audit or other proactive security activity.

look B - No major warning signs, and code is used professionally.
C - No major warning signs, but not widely used or not
well-supported.

D - Code has minor warning signs that need to be investigated in
more detail.

F - Code has known issues, major warning signs, or is abandoned

Contributor A - At least five significant, active contributors.
s and B - More than two significant, active contributors.
activity C - Only one major contributor who is active.
D - Project has been inactive for nine months or less.
F - Project has been inactive for more than one year.

Security
issues

A - Project has had previous security issues and handled them
quickly and well. Bonus if they also mention doing proactive security
such as fuzz testing, static analysis, or security audits.

B - Project has a plan for handling security issues but hasn’t had to
use it much yet.

C - Project does not have a plan for security issues but at least has
an active bug tracker and issues get resolved.

D - Project does not seem to resolve many open bugs.

F - Project has open security issues that are not in the process of
being resolved.

Test
suite

A - Project has test suite with good coverage of positive and
negative test cases set up as part of continuous integration, and test
results are published for each build.

B - Project has test suite with good coverage but no continuous
integration.

C - Test suite mostly covers positive test cases; very few or no error
cases.

D - Test suite has very low coverage or is only a few examples.
F - No test suite.

Activity:
Try a risk assessment on a random open source
package!

Use one you care about, or go to
https://qithub.com/trending

(be aware, those aren’t always appropriate, just scroll on if they're sketchy)
Scorecard:

https://qgithub.com/sec-princess/WWCode-OSS-Study-Night-2
0180927/blob/master/OSS%20Component%20Scorecard.pdf

https://github.com/trending
https://github.com/sec-princess/WWCode-OSS-Study-Night-20180927/blob/master/OSS%20Component%20Scorecard.pdf
https://github.com/sec-princess/WWCode-OSS-Study-Night-20180927/blob/master/OSS%20Component%20Scorecard.pdf

SECTION GRADE

First look

Contributors
and activity

Security
issues

Test suite

GRADING GUIDELINES

A - Mentions security audit or other proactive security activity.

B - No major warning signs, and code is used professionally.

C - No major warning signs, but not widely used or not well-supported.

D - Code has minor warning signs that need to be investigated in more detail.
F - Code has known issues, major warning signs, or is abandoned

A - At least five significant, active contributors.

B - More than two significant, active contributors.

C - Only one maijor contributor who is active.

D - Project has been inactive for nine months or less.
F - Project has been inactive for more than one year.

A - Project has had previous security issues and handled them quickly and well. Bonus if they also mention doing proactive
security such as fuzz testing, static analysis, or security audits.

B - Project has a plan for handling security issues but hasn’t had to use it much yet.

C - Project does not have a plan for security issues but at least has an active bug tracker and issues get resolved.

D - Project does not seem to resolve many open bugs.

F - Project has open security issues that are not in the process of being resolved.

A - Project has test suite with good coverage of positive and negative test cases set up as part of continuous integration,
and test results are published for each build.

B - Project has test suite with good coverage but no continuous integration.

C - Test suite mostly covers positive test cases; very few or no error cases.

D - Test suite has very low coverage or is only a few examples.

F - No test suite.

