Putting the Internet back into IoT

Or how you should / should not use the cloud

Let us lay some ground works...
What most "home" networks look like:

Firewall

Main Network Guest More
Groundwork:
IoT devices

Typical ways devices connect to the Internet

- Through a Gateway:
 - Bluetooth
 - Z-wave
 - 0 802.11.6
 - Zigbee
 - o IR
 - Smoke Signals
 - Carrier Pigeons

- Directly:
 - o Wifi
 - Ethernet

- Using:
 - o IPv4
 - o IPv6

Lets come back to this for a minute to talk about IPv4 vs. IPv6

Main Network Wireless Guest

Local Access vs. Remote Access

- IPv4 Local
 - Direct Access
 - Straight Forward
 - Mostly ubiquitous support
- IPv4 Remote
 - NAT traversal
 - Punching holes in firewalls
 - Port Forwarding
 - UPNP
 - Cloud reverse proxies

- IPv6 Local
 - Direct Access
 - Straight Forward
 - Getting more ubiquitous but not there
- IPv6 Remote
 - Direct Access
 - Punching holes in firewalls
 - o UPNP
 - Cloud based IP lookup (and/or reverse proxies)

Some general words of caution...

- Think about what you are using the Internet for
- Be mindful of where your services live
- Sometimes UX the user can use may make you less secure
- Always change the default passwords!
- Make it possible to do things without auto-discovery
- Don't always assume you are on the same network as the device
- Upgrade schemes need to be done

Shifting gears & talk about how to talk to the devices

But the real advantage to IoT is the I - Internet!

Lots of good ways to do this...

- MQTT
- Liota
- AMQP
- STOMP
- RabbitMQ
- REST
- WAMP

- ZeroMQ
- Java Message Service (JMS)
- CoAP
- CLOUD!
- XMPP-IOT
- XMPP
- etc.....

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SITUATION:
THERE ARE
15 COMPETING
STANDARDS.

https://xkcd.com/927/

Now lets talk about something to try

- MQTT Mosquitto, MQTT broker, good for local passing of data
- Think of it as a message bus on the network
- Clients Subscribe to Topics that can be hierarchical, and listen to the Topic
 - /myhome/groundfloor/livingroom/temperature for example
 - You can listen at any level of the hierarchy, anything below your level will be filtered to you
 - Wildcards, +, are allowed /myhome/+/temperature
- Devices Publish data to topics
 - The data is freeform, the receiving end is expected to interpret it

Lets just try listening...

On your laptop/VM:

```
yum install mosquitto
```

apt-get install mosquitto-clients

then

```
mosquitto_sub \
    -h 10.111.0.5 \
    -t "pugnose/temp/core0" \
    -u "ale" \
    -P "Penguins"
```

Expected output:

+67.0°C

What's running on "pugnose":

```
while [[ 1 ]];do \
     mosquitto pub \
           -h 10.111.0.5 \
           -t "pugnose/temp/core0" \
           -m "$(\
                sensors | \
                arep "Core 0" | \
                tr " " "\n" | \
                grep "°" | \
                head -n 1 \
           ) " \
           -u "ale" \
           -P "Penguins"; \
           sleep 10;\
```

done

Next Up, adding the Raspberry Pi

Server Side:

- MQTT server
 - Mosquitto
 - Default config w/ username/password set

Client Side

- apt-get install mosquitto mosquitto-clients
- On your laptop / VM / not the Raspberry Pi

```
o mosquitto_sub \
    -h 10.111.0.5 \
    -t "topic_name" \
    -u "ale" \
    -P "Penguins"
```

On the Raspberry Pi

What this is doing:

The MQTT broker is passing published messages (mosquitto_pub) to subscribed (mosquitto_sub) clients.

What this is doing:

The MQTT broker is passing published messages (mosquitto_pub) to subscribed (mosquitto_sub) clients.

```
      mosquitto_sub \ <------ The Command</td>
      mosquitto_pub \ <----- The Command</td>

      -h 10.111.0.5 \ <---- The (-h)ost</td>
      -h 10.111.0.5 \ <---- The (-h)ost</td>

      -t "topic_name" \ <-- The (-t)opic</td>
      -t "topic_name" \ <-- The (-t)opic</td>

      -u "ale" \ <----- The (-u)sername</td>
      -m "hello world" \ <- The (-u)sername</td>

      -P "Penguins" <----- The (-P)assword</td>
      -P "Penguins" <----- The (-P)assword</td>

      Output:
      Output:
```

So Lets try this:

```
Laptop:
mosquitto_sub \
    -h 10.111.0.5 \
    -t "ale/<your name no spaces>/test" \
    -u "ale" \
    -P "Penguins"

Output:
hello world
```

```
mosquitto_pub \
    -h 10.111.0.5 \
    -t "ale/<your name no spaces>/test" \
    -m "hello world" \
    -u "ale" \
    -P "Penguins"
```

Raspberry Pi:

Output:

<none unless error>