
Debugging with GDB

Chris Simmonds

E-ALE @ Embedded Linux Conference Europe 2019

Debugging with GDB 1 Copyright © 2011-2019, 2net Ltd

License

These slides are available under a Creative Commons Attribution-ShareAlike 4.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work

Debugging with GDB 2 Copyright © 2011-2019, 2net Ltd

http://creativecommons.org/licenses/by-sa/4.0/legalcode

About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at http://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Debugging with GDB 3 Copyright © 2011-2019, 2net Ltd

http://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/

Objectives

• Show how to use GDB to debug applications

• How to attach to a running process

• How to look at core dumps

• Plus, we will look at graphical interfaces for GDB

• Reference: MELP2 Chapter 14

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the
code as cleverly as possible, you are, by definition, not smart enough to debug it"
- Brian W. Kernighan

Debugging with GDB 4 Copyright © 2011-2019, 2net Ltd

Toolchains

GNU toolchain = GCC + binutils + C library + GDB

GCC GNU Compiler Collection - C, C++, Objective-C, Go and other
languages

binutils assembler, linker and utilities to manipulate object code

C library the POSIX API and interface to the Linux kernel

GDB the GNU debugger

Debugging with GDB 5 Copyright © 2011-2019, 2net Ltd

Native vs cross compiling

Native (on target)

• PocketBeagle running Debian or Raspberry Pi running
Raspbian

• PC

Cross (on host)

• Traditional embedded development

• OpenEmbedded/Yocto Project

• Buildroot

More about debugging cross-compiled code later...

Debugging with GDB 6 Copyright © 2011-2019, 2net Ltd

Toolchain sysroot
• The sysroot of the toolchain is the directory containing the supporting

files

• Header files; shared and static libraries, etc.

• Native toolchain: sysroot = ’/’

• Cross toolchain: sysroot is usually inside the toolchain directory

• Find it using -print-sysroot

• Example:
$ aarch64-buildroot-linux-gnu-gcc -print-sysroot

/home/traning/aarch64--glibc--stable/bin/../

aarch64-buildroot-linux-gnu/sysroot

You will need to know the sysroot when cross-compiling

Debugging with GDB 7 Copyright © 2011-2019, 2net Ltd

Preparing to debug 1/2

Compile with the right level of debug information
gcc -gN myprog.c -o myprog

where N is from 0 to 3:
Level Description
0 no debug information (equivalent to omitting -g)
1 minimal information, just enough to generate a backtrace
2 (default) source-level debugging and single-stepping
3 information about macros

You can replace -gN with -ggdbN to generate GDB specific debug info
instead of generic DWARF format

Debugging with GDB 8 Copyright © 2011-2019, 2net Ltd

Preparing to debug 2/2

• Code optimization can be a problem

• especially if you plan to do a lot of single-stepping

• Consider turning off optimization with compiler flag -O0

• Or enable just GDB compatible optimizations with compiler flag -Og

Debugging with GDB 9 Copyright © 2011-2019, 2net Ltd

A debug session
• Launch your program with gdb

$ gdb helloworld

GNU gdb (Debian 7.12-6) 7.12.0.20161007-git

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "arm-linux-gnueabihf".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from helloworld...done.

Debugging with GDB 10 Copyright © 2011-2019, 2net Ltd

Breakpoints
Add a breakpoint

break [line|function], example

(gdb) break main

Breakpoint 1 at 0x400535: file helloworld.c, line 7.

List breakpoints
info break:

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00400535 in main at helloworld.c:7

Delete a breakpoint
delete break:

(gdb) delete break 1

Debugging with GDB 11 Copyright © 2011-2019, 2net Ltd

Controlling execution

Run the program from the start
run

Continue executing the program from a breakpoint
continue

Step one line of code, stepping into functions
step

Step one line of code, stepping over functions
next

Run to the end of the current function
finish

Debugging with GDB 12 Copyright © 2011-2019, 2net Ltd

Displaying and changing variables

Display a variable
print some_var

(gdb) print i

$1 = 1

Change a variable
set some_var=new_value

(gdb) set var i=99

Debugging with GDB 13 Copyright © 2011-2019, 2net Ltd

watchpoints
Break when a variable changes

watch some_var

(gdb) watch i

Hardware watchpoint 2: i

(gdb) c

Continuing.

0 Hello world

Hardware watchpoint 2: i

Old value = 0

New value = 1

0x0000000000400556 in main (argc=1, argv=0x7fffffffde28) at helloworld.c:7

7 for (i = 0; i < 4; i++)

Conditional watch
watch some_var if condition

(gdb) watch i if i == 3

Debugging with GDB 14 Copyright © 2011-2019, 2net Ltd

stack frames and back trace
Each function has a stack frame which contains the local (auto) variables

Show stack frames
bt

(gdb) bt

#0 addtree (p=0x0, w=0xffffdcd0 "quick") at word-count.c:39

#1 0x004008b4 in addtree (p=0x603250, w=0xfffffdcd0 "quick") at word-count.c:53

#2 0x004009fd in main (argc=1, argv=0xffffde28) at word-count.c:92

Display local variables
info local

Change current stack frame
frame N

(gdb) frame 2

Debugging with GDB 15 Copyright © 2011-2019, 2net Ltd

GDB command files

• At start-up GDB reads commands from

• $HOME/.gdbinit

• .gdbinit in current directory

• Files named by gdb command line option -x [file name]

• Note: auto-load safe-path

• Recent versions of GDB ignore .gdbinit unless you enable it in
$HOME/.gdbinit

add-auto-load-safe-path /home/myname/myproject/.gdbinit

Debugging with GDB 16 Copyright © 2011-2019, 2net Ltd

Debugging library code

• By default GDB searches for source code in

• $cdir: the compile directory (which is encoded in the ELF header)

• $cwd: the current working directory
(gdb) show dir

Source directories searched: $cdir:$cwdv

• You can extend the search path with the directory command:
(gdb) dir /home/chris/src/mylib

Source directories searched: /home/chris/src/mylib:$cdir:$cwd

Debugging with GDB 17 Copyright © 2011-2019, 2net Ltd

Just-in-time debugging

• Both gdb and gdbserver can attach to a running process and debug it,
you just need to know the PID

• With gdbserver, you attach like this (PID 999 is an example)
gdbserver --attach :2001 999

• If debugging natively using GDB, use the attach command:
(gdb) attach 999

• In either case, to detach and allow the process to run freely again:
(gdb) detach

Debugging with GDB 18 Copyright © 2011-2019, 2net Ltd

Core dump

core
file

stack

mmap

heap

data

text (code)

A core file is created if:

• size is < RLIMIT_CORE

• the program has write permissions to
create a file

• not running with set-user-ID

• Set RLIMIT_CORE to un-limited using
command: ulimit -c unlimited

Debugging with GDB 19 Copyright © 2011-2019, 2net Ltd

Using gdb to analyse a core dump

• Command-line gdb
gdb sort-debug ∼/rootdir/usr/bin/core
...

Core was generated by `/sort-debug /etc/protocols'.

Program terminated with signal 11, Segmentation fault.

#0 0x00008570 in addtree (p=0x0, w=0xbeaf4c68 "Internet") at

sort-debug.c:45

45 p->word = strdup (w);

(gdb) back

#0 0x00008570 in addtree (p=0x0, w=0xbeaf4c68 "Internet") at

sort-debug.c:45

#1 0x00008764 in main (argc=2, argv=0xbeaf4e34) at sort-debug.c:95

(gdb)

Debugging with GDB 20 Copyright © 2011-2019, 2net Ltd

Core pattern

• By default, core files are called core and placed in the working
directory of the program

• Or, core file names are constructed according to
/proc/sys/kernel/core_pattern

• See man core(5) for details

Example: /corefiles/%e-%p

%e executable name
%p PID

Debugging with GDB 21 Copyright © 2011-2019, 2net Ltd

GUI front ends

• There are many front-ends, including

• TUI: Terminal User Interface

• cgdb: an improved version of TUI

• DDD: Data Display Debugger

Debugging with GDB 22 Copyright © 2011-2019, 2net Ltd

TUI

Part of GDB

Launch like this:
gdb -tui myprog

Or toggle on and off with
Ctrl-x a

Debugging with GDB 23 Copyright © 2011-2019, 2net Ltd

cgdb

A wrapper for TUI, adds
syntax highlighting. Better
than TUI by itself

Launch like this:
cgdb myprog

Debugging with GDB 24 Copyright © 2011-2019, 2net Ltd

DDD: Data Display Debugger

A graphical front-end to GDB

Launch like this:
ddd myprog

Debugging with GDB 25 Copyright © 2011-2019, 2net Ltd

Lab time...

Get the slides and sample code from
https://cm.e-ale.org/2019/ELCE2019/debugging-with-gdb

Follow the notes in
debugging-EALE-2019-csimmonds-workbook.pdf

Call me or one of the helpers if you encounter problems

Debugging with GDB 26 Copyright © 2011-2019, 2net Ltd

https://cm.e-ale.org/2019/ELCE2019/debugging-with-gdb

Debugging with cross compiled code

• Native compiling is not so common in embedded Linux

• Most embedded projects are developed using cross-compilers

• Tools such as OpenEmbedded/Yocto Project and Buildroot work this
way

• I will be talking about this in my talk on Wednesday

• Debian or Yocto Project? Which is the Best for your Embedded Linux
Project?

• https://sched.co/TLJZ

Debugging with GDB 27 Copyright © 2011-2019, 2net Ltd

https://sched.co/TLJZ

Remote debugging

Program
symbols

gdb from
toolchain

Program
without symbols

gdbserver

Host Target

Network
or

serial

Debugging with GDB 28 Copyright © 2011-2019, 2net Ltd

Debug info

• Need debug info on the host for the applications and libraries you
want to debug

• It’s OK for the files on the target to be stripped: gdbserver does not use
debug info

• Debug info may be included in the binary (the Buildroot way)

• Or placed in a sub-directory named .debug/ (the Yocto
Project/OpenEmbedded way)

Debugging with GDB 29 Copyright © 2011-2019, 2net Ltd

Debug build - Yocto Project

• You need to add debug tools for the target: add this to your
conf/local.conf

EXTRA_IMAGE_FEATURES = "debug-tweaks tools-debug"

• And you need to build an SDK which will contain the tools for the host,
and the debug symbols
bitbake -c populate_sdk <image name>

Debugging with GDB 30 Copyright © 2011-2019, 2net Ltd

Debug build - Buildroot

• You need to run menuconfig and enable these options
PACKAGE_HOST_GDB

PACKAGE_GDB

PACKAGE_GDB_SERVER

ENABLE_DEBUG

• Then re-build the image

• The executables with debug symbols are put in
output/host/usr/<arch>/sysroot

Debugging with GDB 31 Copyright © 2011-2019, 2net Ltd

Setting sysroot

• sysroot tells GDB where to find library debug info

• For Buildroot
set sysroot <toolchain sysroot>

• Using a Yocto Project SDK:
set sysroot /opt/poky/<version>/sysroots/<architecture>

Debugging with GDB 32 Copyright © 2011-2019, 2net Ltd

Command-line debugging
Development host Embedded target

gdbserver :2001 helloworld

$ arm-poky-linux-gnueabi-gdb helloworld
(gdb) set sysroot /opt/poky/2.5.1/...
(gdb) target remote 192.168.7.2:2001

“Remote debugging from host 192.168.7.1”

{program runs to main()}

(gdb) break main
(gdb) continue

Debugging with GDB 33 Copyright © 2011-2019, 2net Ltd

Notes

• GDB command target remote links gdb to gdbserver

• Usually a TCP connection, but can be UDP or serial

• gbdserver loads the program into memory and halts at the first
instruction

• You can’t use commands such as step or next until after the start of C
code at main()

• break main followed by continue stops at main(), from which point you
can single step

Debugging with GDB 34 Copyright © 2011-2019, 2net Ltd

GDB front-ends with a cross toolchain

cgdb -d arm-poky-linux-gnueabi-gdb myprog

end{codeSmall}

\begin{codeSmall}

ddd --debugger arm-poky-linux-gnueabi-gdb myprog

Debugging with GDB 35 Copyright © 2011-2019, 2net Ltd

Debugging kernel code
Outside the scope of this workshop, but ...

• Build kernel with KGDB - which is like gdbserver but integrated into the
kernel

• Connect to serial port on target

• Read debug symbols from vmlinux file

Development
machine

GDB

Target
machine

kgdb
serial

Kernel

vmlinux

Debugging with GDB 36 Copyright © 2011-2019, 2net Ltd

Delving deeper

• This is an excerpt from my Mastering embedded Linux class

• If you would like to discover more about the power of embedded Linux,
visit http://www.2net.co.uk/training.html and enquire about
training classes for your company

• 2net training is available world-wide

• Also, my book, Mastering Embedded Linux Programming, covers the
topics discused here in much greater detail

Debugging with GDB 37 Copyright © 2011-2019, 2net Ltd

http://www.2net.co.uk/training.html

Further reading

• The Art of Debugging with GDB, DDD, and Eclipse, by Norman Matloff
and Peter Jay Salzman, No Starch Press; 1st edition (28 Sept, 2008)

• GDB Pocket Reference by Arnold Robbins, O’Reilly Media; 1st edition
(12 May, 2005)

Debugging with GDB 38 Copyright © 2011-2019, 2net Ltd

	Debugging embedded devices using GDB

