
Introduction to

NFTables
Mike Anderson

Director of Technology

The PTR Group, LLC

Speaker/Author Details

ELC-SD-0919-2

• Website:

• http://www.theptrgroup.com

• Email:

• mailto:mike@theptrgroup.com

• Linked-in:

• https://www.linkedin.com/in/mikeandersonptr

• Twitter:

• @hungjar

• PTR is now a subsidiary of

Copyright 2019, The PTR Group, LLC.

http://www.theptrgroup.com/
mailto:mike@theptrgroup.com
https://www.linkedin.com/in/mikeandersonptr

What We Will Talk About…
• Linux packet handling hooks in the stack

• Stateless and stateful firewalls

• Connection tracking

• Xtables packet flow

• nftables architecture

• Installation in kernel and userspace

• Approach and usage

• Converting existing Xtables firewalls to nftables

• Finding documentation

• Summary

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-3

• The paths taken in the stack by network frames differ for the inbound (ingress),
routed/bridged and outbound (egress) data streams

• There are multiple decision points along the way that determine the fate and path
of network frames

• These include the potential of simply dropping the packet at several decision
points

L1

L2 (MAC)

L3

L4

Application layer L5+

Ingress Forward Egress

Bridging

Routing

Understanding Network Traffic Terms

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-4

Hooks Within the Stack

Device Driver (Input)

CRC & Consistency Checks

NF_IP_PRE_ROUTING

Routing

NF_IP_LOCAL_IN
(iptables: INPUT)

Higher layers
Local Processes

NF_IP_LOCAL_OUT
(iptables: OUTPUT)

Routing

NF_IP_POST_ROUTING

Device Driver (Output)

NF_IP_FORWARD
(iptables: FORWARD)

NF_BR_PRE_ROUTING

NF_BR_LOCAL_IN

NF_BR_POST_ROUTING

NF_BR_LOCAL_OUT

NF_BR_FORWARD

ebtables

iptables/ip6tables

L3
L2

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-5

Example Hook Module
• Here is an example of hooking in the stack to simply drop all UDP traffic
// ’Hello World’ v2 netfilter hooks example that drops UDP (protocol 17)

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/netfilter.h>

#include <linux/netfilter_ipv4.h>

#include <linux/skbuff.h>

#include <linux/udp.h>

#include <linux/ip.h>

static struct nf_hook_ops nfho; //net filter hook option struct

struct sk_buff *sock_buff;

struct udphdr *udp_header; //udp header struct (not used)

struct iphdr *ip_header; //ip header struct

int init_module() {

nfho.hook = hook_func;

nfho.hooknum = NF_IP_PRE_ROUTING;

nfho.pf = PF_INET;

nfho.priority = NF_IP_PRI_FIRST;

nf_register_hook(&nfho);

return 0;

} (source http://www.paulkiddie.com)

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-6

Example Hook Module #2
unsigned int hook_func(unsigned int hooknum, struct sk_buff **skb,

const struct net_device *in,

const struct net_device *out,

int (*okfn)(struct sk_buff *)) {

sock_buff = *skb;

// grab network header using accessor

ip_header = (struct iphdr *)skb_network_header(sock_buff);

if(!sock_buff) { return NF_ACCEPT;}

// grab transport header

if (ip_header->protocol==17) {

udp_header = (struct udphdr *)skb_transport_header(sock_buff);

// log we’ve got udp packet to /var/log/messages

printk(KERN_INFO "got udp packet \n");

return NF_DROP;

}

return NF_ACCEPT;

}

void cleanup_module() {

nf_unregister_hook(&nfho);

}

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-7

Network Packet Filtering

• Within each operating system with network
connectivity, we must take into account the
evil cyber wonks
– They have nothing better to do with their time but

attack the unsuspecting

• Generally, the first layer of a defense-in-depth
strategy is to try to block evil-doers with a packet filter
– Drops/blocks packets before they can enter the network stack

– Packet filters are typically stateless or stateful
• Stateless filters are also known as network-layer firewalls

• Stateful filters are also known as circuit-level firewalls

Source: youtube.com

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-8

Packet Filters
• Validates a packet based mostly on the contents of its IP header

– IP Addresses

– Protocol

– Type of service

– Hardware Interface

– Direction

• Each packet is an entity onto themselves
– I.e., the filter is stateless

• Little visibility into the packet
payload/data

• Packet filters *can* look into the
TCP header
– Typically only for the TCP/UDP port, however

Source: learn-networking.com

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-9

Well Known Port Examples

• A Linux system has 65535
ports
– Ports are bound using the
bind() call for servers or
automatically for clients

• Not all are used

• Modification of well-known ports
(1-1023) requires superuser permissions
– Reserved for privileged system processes

Source: certapps.com

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-10

Other Ports

• Registered Ports (1024 -> 49151) are for applications
that do not need superuser privileges
– OpenVPN:1194

– NFS: 2049

– SVN: 3690

• Ephemeral Ports (49152 -> 65535) are for applications
that need a temporary communications port

• Many Linux kernels use the port range
(32768 -> 61000) for sockets

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-11

Problems With Port Blocking

• FTP example

– Client sends command from an arbitrary port to port 21 on

the server

– Server sends data from port 20 to the client on a

dynamically allocated port

– Depending on the firewall configuration

(usually default deny) the dynamically-allocated port is

probably blocked

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-12

Example Packet Filtering Rules

Policy/Rule Firewall Setting

No outside Web access Drop all outgoing packets to any IP address using port 80

Prevent IPTV from eating up the available bandwidth Drop all incoming UDP packets except DNS and router
broadcasts

Prevent your network from being used for a DoS attack Drop all ICMP packets going to a 'broadcast' address
(e.g. 222.22.255.255)

Prevent your network from being tracerouted Drop all outgoing ICMP

Source: cis.poly.edu

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-13

• Packet filter behavior is defined by the use of rules

Packet Filter Rule Definitions

Action
Source

Address

Dest

Address
Protocol

Source

Port

Dest

Port

Deny 222.22/16
outside of

222.22/16
TCP > 1023 80

Allow
outside of

222.22/16
222.22/16 TCP 80 >1023

Allow 222.22/16
outside of

222.22/16
UDP >1023 53

Allow
outside of

222.22/16
222.22/16 UDP 53 >1023

Deny All All All All All

Source: cis.poly.edu

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-14

• Rules are

processed from

top to bottom until

match is found

• If no rule matches,

the default policy

is followed

Stateless Filters: Pros & Cons
• Advantages

– Effective against worms and Trojan horses

– Can be very fast if filtering rules are not too complex

– Built into Linux kernel

• Disadvantages
– Does not protect against attacks with malformed packets (e.g., spoofing)

– Does not protect against protocol-based attacks (e.g., buffer overflows)

– Not effective against attacks using authorized channels (e.g., email viruses)

– Cannot enforce some policies like excluding certain users

– Rules can get complicated and difficult to test

• Necessary but not sufficient
– Packet filters are the first line of defense in a multi-layered approach

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-15

Stateful Filters

• Extension of basic packet filters

• Remembers the state of
communication sessions

• Using TCP header information,
it permits connections only
from trusted clients

• Can configure to only allow
in packets from established
sessions

Source: cisco.com

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-16

Connection State Table
• Keeps a dynamic

table of active
sessions

• Assigns connection
states to each packet
– NEW, ESTABLISHED,

RELATED, INVALID

• Linux uses the
conntrack
mechanism to
maintain the
connection table

Source: johnboy60.com

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-17

Stateful Filters: Pros & Cons
• Advantages

– Relatively easy to implement
• Standard protocols are very easy to configure

– Among the fastest filter types
• Needs to check packet rules for connection requests (OSI layer 7)

• Otherwise only needs to check state table (OSI layer 4 and below)

– Protects against 'answer' session exploits and some DoS like SYN-flooding

– Built into Linux kernel

• Disadvantages
– Does not protect against attacks with malformed packets (e.g., spoofing)

– Does not protect against protocol-based attacks (e.g., buffer overflows)

– Not effective against attacks using authorized channels (e.g., email viruses)

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-18

Bridging Firewalls and Brouters

• At L2, Linux has another set of packet filtering code

known as ebtables

– Three separate tables: filter, NAT and broute

• Often used for rewriting MAC addresses ala NAT

• In the broute table, we decide to either bridge or

route the packet by forwarding it to L3
• DROP rule says to route the frame to L3 and ACCEPT rule says to

bridge the frame

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-19

Netfilter Architecture
• ebtables: Manages ruleset for Ethernet packet frames

• arptables: Manages ruleset for ARP packet frames

• iptables/ip6tables: iptables for IPv4 and IPv6 respectively

• conntrack: Manage in-kernel connection state table

Source: wikipedia.org

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-20

Xtables Packet Flow

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-21

Source: inai.de

Problems with Xtables

• The Xtables mechanism has been in use since the 2.4 kernel

• Defining both stateless and stateful firewall rules can be
tedious due to the number of rules that need to be written

• The order of the rules is important
– Any change to the rules require the entire table be reloaded

• When being used on a multi-tenant server, the creation and
searching of the rules for each client starts to slow
exponentially as the number of rules increases

• In addition, there is considerable duplicated code between
the protocol stacks

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-22

Example of Dropping Malformed Packets

• Deal with oddball packets
$ iptables -A INPUT -i eth0 -p tcp -m tcp
--tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -j DROP

$ iptables -A INPUT -i eth0 -p tcp -m tcp
--tcp-flags FIN,SYN FIN,SYN -j DROP

$ iptables -A INPUT -i eth0 -p tcp -m tcp
--tcp-flags SYN,RST SYN,RST -j DROP

$ iptables -A INPUT -i eth0 -p tcp -m tcp
--tcp-flags FIN,RST FIN,RST -j DROP

$ iptables -A INPUT -i eth0 -p tcp -m tcp
--tcp-flags FIN,ACK FIN -j DROP

$ iptables -A INPUT -i eth0 -p tcp -m tcp
--tcp-flags ACK,URG URG -j DROP

Copyright 2019, The PTR Group, LLC.P2011-Firewals-IPTables-23

Source: typepad.com

Source: linuxjournal.com

Enter nftables
• In 2009, the nftables project was created by Patrick McHardy to

address the perceived problems of netfilter code duplication for each
protocol and that of the Xtables mechanism slowing down packet
handling

• In the mean time, the ipset command was introduced to
simplify the creation of efficient look-up tables for “sets” of
addresses

– Made it more efficient to match rules against large numbers of IP addresses like from a
blacklist of evil IPs

• nftables languished because it addressed a problem that had apparently already
been solved

• Then, in 2013, the nftables project was revived by Pablo Neira Ayuso and the
code made it into mainline for the 3.13 kernel

– Driven by the explosion of the use of containers and VMs which made the existing Xtables
solutions untenable because large sets of rules would come and go rapidly

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-24

Source: nftables.org

nftables Architecture
• In order to simplify all of the Xtables commands into a generic syntax with

a common API and significantly reduce the amount of duplicated code,
nftables borrows the interpreter VM concept from BPF
– The VM in the kernel space runs bytecode compiled in userspace via the nft CLI

• No separate APIs for iptables, ip6tables, arptables, ebtables, etc.
– However, no predefined tables like iptables’ INPUT, OUTPUT, FORWARD, etc.

– So, you have to essentially start from scratch each time the system starts

• Uses the existing NF hooks and conntrack mechanism
– Remains compatible with iptables via some translators

• Arithmetic, bitwise and comparison operators can be used for deciding
the fate of packets
– Supports arbitrary offsets into packets for evaluations

• Like Xtables, nftables are a sequence of Table->Chain->Rule tuples

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-25

Verify that nftables is in the Kernel

• Because nftables is an alternative to Xtables, your
kernel may not have nftables enabled
lsmod | grep ^nf

<lots of modules beginning with nf>

• It’s also possible that your kernel may have nft statically
linked
– Try to create a table and chain using:
nft add table inet filter

nft add chain inet filter input

– If these succeed, then nftables is installed

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-26

Kernel Configuration

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-27

Usage
• You will need to install the nftables and iptables-nftables-compat packages

– You need the nft CLI and the iptables-to-nftables translators and their libraries

• The nft CLI is both a compiler and decompiler of the bytecode to/from the kernel
VM

• Any changes made from the command line are transient and will be lost on the
next reboot

– Can be saved to a file and reloaded on the next reboot
• i.e., if loaded from a file, these are considered “permanent”

• The file /etc/nftables.conf is automatically loaded by systemd

• There are commands that will take iptables/ip6tables commands and show the
equivalent nftables command

• Also, there are iptables syntax-compatible commands that use the nftables
framework

– E.g., iptables-compat, arptables-compat, ebtables-compat, etc.

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-28

Coexistance of Xtables and nftables

• You can have both Xtables and nftables active

simultaneously

– Not recommended as this makes it nearly impossible to debug

• To disable iptables/ip6tables, use:

iptables –F; iptables –L

ip6tables –F; ip6tables -L

• To disable nftables, use:

nft flush ruleset

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-29

Source: sfgate.com

Basic Approach
• The sequence of tasks in nftables is to create a table(s), then

chain(s), then rule(s)

• Each command should include an address family
– Defaults to the ip family if none specified

• The address families are:
– ip IPv4 address family

– ip6 IPv6 address family

– inet Internet (IPv4/IPv6) address family

– arp ARP address family (IPv4 ARP packets)

– bridge Bridge address family (L2)

– netdev Netdev address family, handling packets from ingress

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-30

CLI vs. File

• It is possible to enter all of the elements of the tables
via the nft CLI

– However, some of the options can be tricky to enter from
the command line due to the shell’s line interpreter

nft add chain ip traffic-filter output \

{ type filter hook output priority 0 \; policy accept\; }

• Alternatively, you can put the commands into a
formatted file and import the file using:
nft –f <filename>

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-31

Sample IPv4/IPv6 Combined Firewall
#!/sbin/nft -f

flush ruleset

table inet filter {
chain input {

type filter hook input priority 0; policy drop;
ct state invalid counter drop comment "early drop of invalid packets"
ct state {established, related} counter accept comment "accept all connections related to connections made by us"
iif lo accept comment "accept loopback"
iif != lo ip daddr 127.0.0.1/8 counter drop comment "drop connections to loopback not coming from loopback"
iif != lo ip6 daddr ::1/128 counter drop comment "drop connections to loopback not coming from loopback"
ip protocol icmp counter accept comment "accept all ICMP types"
ip6 nexthdr icmpv6 counter accept comment "accept all ICMP types"
tcp dport 22 counter accept comment "accept SSH"
counter comment "count dropped packets"

}

chain forward {
type filter hook forward priority 0; policy drop;
counter comment "count dropped packets"

}

If you're not counting packets, this chain can be omitted.
chain output {

type filter hook output priority 0; policy accept;
counter comment "count accepted packets"

}
}

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-32

Source: cbronline.com

Example Bridge w/ Failed Translation
ebtables-nft -L
Bridge table: filter Bridge chain: INPUT, entries: 0, policy: ACCEPT
Bridge chain: FORWARD, entries: 2, policy: ACCEPT
--802_3-type 0x0001 -j CONTINUE
--mark 0x1 -j CONTINUE
Bridge chain: OUTPUT, entries: 0, policy: ACCEPT

nft list ruleset
table bridge filter {

chain INPUT {
type filter hook input priority -200; policy accept;

}
chain FORWARD {

type filter hook forward priority -200; policy accept;
#--802_3-type 0x0001 counter packets 0 bytes 0
#--mark 0x1 counter packets 0 bytes 0

}

chain OUTPUT {
type filter hook output priority -200; policy accept;

}
}

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-33

Translating from iptables to nftables
• It is possible to migrate your existing iptables

firewalls to nftables using the following sequence:
iptables-save > iptables.b4nft
iptables-restore-translate -f iptables.b4nft > ruleset.nft
nft -f ruleset.nft

• Then, you can move these commands into
the /etc/nftables.conf so systemd will load them at boot

• You can also translate iptables commands one-by-one:
iptables-translate -A INPUT -i eth0 -p tcp -m tcp \

--tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -j DROP

nft add rule ip filter INPUT iifname eth0 tcp flags &\
(fin|syn|rst|psh|ack|urg) == 0x0 counter drop

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-34

Source: migrationboutique.com

GUI Firewall Builder for nftables?
• The syntax for nftables is relatively

complex and not well documented
– So, is there a GUI that outputs the rules

in the correct format?

• Well, sort of…
– fwbuilder is used by Red Hat and

claims to have output compatible with
nftables

• But, there’s nothing obvious in the GUI for nftables

– And, any of the iptables-based firewall builders could output iptables
commands that could be converted to nftables using the techniques
presented earlier

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-35

Source: sourceforge.net

Finding Documentation
• Unfortunately, there’s not a lot of documentation on nftables

• The nftables HOWTO can be found here:
https://wiki.nftables.org/wiki-nftables/index.php/Main_Page

• ArchLinux also has a wiki:
https://wiki.archlinux.org/index.php/Nftables

• Fortunately, there’s also a book:
Linux Firewalls: Enhancing Security with
nftables and Beyond, Steve Suehring,
Addison-Wesley Professional, 2015,
ISBN10:0134000021

• And, there is the nft manual page ☺

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-36

Source: amazon.com

https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
https://wiki.archlinux.org/index.php/Nftables

Summary
• nftables is heralded as the future for Linux firewalls

– In spite of being in mainline for over 5 years, there’s still

very little documentation

• nftables addresses many of the problems encountered with

Xtables with respect to:

– Different syntax with the various tools

• One unified syntax across L2-L4

– Code duplication between address families

• Single kernel-based VM ala BPF

– Stack slow downs due to large numbers of rules

• Rules can be aggregated with fast lookup

– Requiring reloading all of the rules if something needed to be modified

• The ability to modify any rule in any chain without needing to reload

• Fortunately, there are several compatibility commands and layers that allow you to continue with the known

Xtables syntax and have that converted to nftables

• The bottom line is that the learning curve for nftables is steep

– But, the benefits appear to be worth the effort

Copyright 2019, The PTR Group, LLC.ELC-SD-0819-37

Source: tunnelsup.com

