
Debugging and Profiling

Linux Applications

Mike Anderson

Director of Technology

The PTR Group, LLC

Speaker/Author Details

ELC-SD-0919-2

• Website:

• http://www.theptrgroup.com

• Email:

• mailto:mike@theptrgroup.com

• Linked-in:

• https://www.linkedin.com/in/mikeandersonptr

• Twitter:

• @hungjar

• PTR is now a subsidiary of

Copyright 2019, The PTR Group, LLC

http://www.theptrgroup.com/
mailto:mike@theptrgroup.com
https://www.linkedin.com/in/mikeandersonptr

What We Will Talk About…
• The GNU Project, GCC and gdb

• Compiling for debugging

• gdb CLI, TUI and gdbfront-ends

• Getting help, scripts and macros

• Launching, loading and running applications

• Attaching to a running application

• Breakpoints, watchpoints and more

• gdbserver and its options

• strace/ltrace

• gprof/gcov

• Valgrind

• LTTng and Ftrace

ELC-SD-0919-3 Copyright 2019, The PTR Group, LLC

Debugging Tool Classes

• We can think of debugging tools as falling into one

of two classes:

– Debuggers focused on determining what the code actually

did or what it does

• E.g., gdb, LLDB, rr, UndoDB, Live Recorder, etc.

– Checkers that try to catch a particular bad thing such as a

buffer overrun

• Could be static or dynamic

– E.g., Valgrind, Address Sanitizer, Coverity, etc.

Copyright 2019, The PTR Group, LLCELC-SD-0819-4

The GNU Project
• The ostensible goal of the GNU Project was to create a Un*x clone

without any AT&T sources
– GNU’s Not Unix

• There are several projects developed that all targeted the original goal
– First, there was the GNU C compiler (gcc) and later g++ finally manifesting itself

as GCC – the Gnu Compiler Collection
• Front ends for C, C++, Objective-C, FORTRAN, Ada and Go with associated libraries like

libstdc++, etc.

– Architected as a front-end language parser and a back-end code generator

– Also added numerous binutils such as the linker, librarian, etc.

• The GNU debugger (gdb) was built as a source debugger for GCC
– gdb supports Ada, Assembly, C/C++, D, FORTRAN, Go, Objective-C, OpenCL,

Modula-2, Pascal and Rust

ELC-SD-0919-5 Copyright 2019, The PTR Group, LLC

GDB Command Line Debug Levels
• -g0 will explicitly produce no debug information

• -g1 produces minimal information, enough for making back traces, but
no information about local variables and no line numbers

• -g2 default debug level when not specified. Typically this will produce
symbols, line numbers, etc. needed for symbolic debugging
– This is the default for the -g option to the compiler

• -g3 includes extra information, such as all the macro definitions present
in the program

• And, the mac-daddy of options: -ggdb3
– This is like –g3, but generates debugging information specifically for gdb rather

than normal COFF/XCOFF or DWARF 2 of -g

ELC-SD-0919-6 Copyright 2019, The PTR Group, LLC

Example Compile for GDB
• Example compilation to enable debugging

$ arm-linux-gnueabi-gcc –ggdb3 –o hello helloWorld.c

• Example for examining the debug info in ELF header
$ arm-linux-gnueabi-objdump -h hello
…

24 .comment 0000002a 00000000 00000000 00000a97 2**0

CONTENTS, READONLY

25 .debug_aranges 00000020 00000000 00000000 00000ac1 2**0

CONTENTS, READONLY, DEBUGGING

26 .debug_pubnames 00000031 00000000 00000000 00000ae1 2**0

CONTENTS, READONLY, DEBUGGING

27 .debug_info 00000179 00000000 00000000 00000b12 2**0

CONTENTS, READONLY, DEBUGGING

28 .debug_abbrev 000000d4 00000000 00000000 00000c8b 2**0

CONTENTS, READONLY, DEBUGGING

29 .debug_line 000003ea 00000000 00000000 00000d5f 2**0

CONTENTS, READONLY, DEBUGGING

30 .debug_frame 00000090 00000000 00000000 0000114c 2**2

CONTENTS, READONLY, DEBUGGING

31 .debug_str 000000ea 00000000 00000000 000011dc 2**0

CONTENTS, READONLY, DEBUGGING

32 .debug_loc 00000058 00000000 00000000 000012c6 2**0

CONTENTS, READONLY, DEBUGGING

33 .debug_macinfo 00009e52 00000000 00000000 0000131e 2**0

CONTENTS, READONLY, DEBUGGING

ELC-SD-0919-7 Copyright 2019, The PTR Group, LLC

Running GDB CLI
• When gdb is built from source, we will specify the host and target

environments
– Allows for Windows x Linux, x86 host x ARM target, etc.

• When running gdb from the CLI, we can just use the gdb command:
GNU gdb (Ubuntu 8.1-0ubuntu3) 8.1.0.20180409-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb)

ELC-SD-0919-8 Copyright 2019, The PTR Group, LLC

Running gdb in TUI Mode
• TUI mode is a text-based user

interface that separates out the
program text from the gdb command
line
– Uses curses

• More clear cut than using the typical
CLI, but maybe not as good as the
GUIs for gdb like ddd

• You can start gdb in TUI mode using the
--tui command line argument

• You can switch in and out of TUI mode
using <CTRL> X A keyboard sequence

ELC-SD-0919-9 Copyright 2019, The PTR Group, LLC

GDB GUIs
• There are standalone and IDE-based front ends

to gdb

• These include:
– ddd

• Data Display Debugger

– Also works with cross debugging

– http://www.gnu.org/software/ddd/

– MS Visual Studio Code
• Yes, it’s OSS

• GDB plug-in that enables graphical debug in IDE

• https://code.visualstudio.com/download

• IDE support includes Eclipse, Kdevelop,
Slickedit®, CodeWarrior®, Arriba® and more

ELC-SD-0919-10 Copyright 2019, The PTR Group, LLC

http://www.gnu.org/software/ddd/
https://code.visualstudio.com/download

ddd Front End GUI

• ddd is the GNU-supported graphical
interface for gdb

• ddd supports:
– gdb, jdb, Python, Perl, TCL and PHP

• You can automatically load the
application into gdb at invocation

• ddd can be started with the -debugger
option to run a gdb backend other
than the default gdb instance

$ ddd –debugger arm-linux-gnueabi-gdb myapp

ELC-SD-0919-11 Copyright 2019, The PTR Group, LLC

Example Help Output
(gdb) help

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.

Type "help all" for the list of all commands.

Type "help" followed by command name for full documentation.

Type "apropos word" to search for commands related to "word".

Command name abbreviations are allowed if unambiguous.

ELC-SD-0919-12 Copyright 2019, The PTR Group, LLC

Command Definition and Macros
• gdb has the ability to define your own commands/scripts

• Use the define <name> command to define a sequence of gdb
commands
– Enter each one line-by-line and finish with a single line “end”

• Useful for creating debugging command scripts that you can save for later use or
just to save repeated typing

• Use the document <name> to write documentation for your
defined commands
– Again, enter each one line-by-line and finish with a single line “end”

• There is also the ability to define C/C++ preprocessor macros
using the macro define command
– Visible to all of the inferior’s source files

ELC-SD-0919-13 Copyright 2019, The PTR Group, LLC

gdb Scripts
• If it exists, gdb will execute all of the commands found in

.gdbinit in the current directory
– Useful for executing a sequence of gdb commands at gdb initialization:

set history save on

set print pretty on

set pagination off

set confirm off

• The -x command line option to gdb also allows for running scripts
at gdb load time

• You can also define keyboard macros that launch python scripts or
shell off to the OS using shell <cmd>

ELC-SD-0919-14 Copyright 2019, The PTR Group, LLC

Embedded Python Engine

• gdb now has a tightly integrated Python engine!

– It doesn’t just shell out

• Execute single Python expressions by prefacing the
expression with “python”
– Go into interactive mode by typing “python” and then remember to

type “end” as the last line

• (gdb) python gdb.execute() to do gdb commands

• (gdb) python gdb.parse_and_eval() to get data
from the inferior

• (gdb) python help(‘gdb’) to see Python gdb package

Copyright 2019, The PTR Group, LLCELC-SD-0819-15

Working with Signals via gdb
• gdb is built on top of ptrace

• When an inferior gets a signal, the inferior is suspended and the tracer gets notified

• Show signals
(gdb) info signals

• Prints a table of how signals and how gdb will handle each one
(gdb) info handle

• Change the way gdb will handle the signal
– nostop – do not stop the program but still print that signal occurred

– stop – stop program when signal occurs (implies print as well)

– print – print a message when signal occurs

– noprint – do not mention the occurrence of the signal

– pass – allow your program to see the signal so it can be handled

– nopass – do not pass the signal to your program
(gdb) handle signal keywords

• Delivers a SEGV signal to the current program
(gdb) signal SIGSEGV

ELC-SD-0919-16 Copyright 2019, The PTR Group, LLC

Load/Execute Your Code

• If you don’t load the program from the command

line, you can load additional files using the
file <filename> command

• Once the code is loaded into gdb, you can execute it
using the run command

• You can pass parameters in the same command or
you can use the set args command

– show args will allow you to see the arguments

ELC-SD-0919-17 Copyright 2019, The PTR Group, LLC

Attach to a Running Program

• gdb has the ability to attach to a running program

$ gdb –p <process id>

• This will stop the running program at its current

execution point

• You can then load the executable’s code and symbol
table using the file command to load the source if

it hasn’t already been loaded

ELC-SD-0919-18 Copyright 2019, The PTR Group, LLC

Examining Code
• Once the program is loaded in gdb, you can list any of the source

files using the list command
– Options to list a LINENUM, FILE:LINENUM, FUNCTION, FILE:FUNCTION

or *ADDRESS

• You can specify the number of lines to list as a second parameter
– Defaults to 10 but can be changed with
set listsize <value>

• You can change the options using the set command
– E.g., set output-radix 16 would set the display radix to hexidecimal

– Use show to see the available options

– help set <option> to get help on the different options

ELC-SD-0919-19 Copyright 2019, The PTR Group, LLC

Calling Functions Interactively

• Once the code is loaded, you can actually call

program functions from the gdb command line

– The syntax and parameter passing is based on the

language the code is written in

• The function will be called and the return will be

printed and saved in the value history

ELC-SD-0919-20 Copyright 2019, The PTR Group, LLC

Setting Variables

• You can define new variables, set a register value or

modify program variables using the
set VAR = EXP (or whatever the language

equivalent is for your language)

– Expressions are any valid expression for the language

• You can set a variable that uses the same name as

a gdb command using the
set variable VAR = EXP syntax

ELC-SD-0919-21 Copyright 2019, The PTR Group, LLC

Printing Expressions
• Use the print EXP syntax to print any value from the

current stack frame, globals or an entire file

• Use $NUM to get the previous value of NUM
– You can refer back farther using $$NUM

• Registers are accessed using the $<REGNAME> syntax

• {TYPE}ADREXP refers to datum of data type {TYPE} located
at address ADREXP

• The @ symbol is a binary operator for treating consecutive
data objects anywhere in memory as an array
– E.g., FOO@NUM gives an array whose first element is foo, whose

second is stored in the memory adjacent to FOO, etc.

ELC-SD-0919-22 Copyright 2019, The PTR Group, LLC

Examine Memory at Address

• If we have a known address in memory, such as a
pointer, we can display the memory at that address

• We can also use a format character but x also adds
an additional character to indicate the size of the
display

• Size letters are b(byte), h(halfword), w(word),
g(giant, 8 bytes)

• E.g., (gdb) x /db &test

ELC-SD-0919-23 Copyright 2019, The PTR Group, LLC

Setting Breakpoints
• gdb supports several types of breakpoint

– Normal breakpoints b <lineno>

– Temporary breakpoints tbreak <lineno>

– Hardware breakpoints hbreak <lineno>

• You can also set conditional breakpoints (beware of the overhead)
(gdb) break <lineno> if <condition is true>

• You can issue commands to be run when the breakpoint is hit
(gdb) After b main

(gdb) commands

Type commands to be executed when breakpoint 1 is hit, one per line

End with a line saying just “End”

> silent

> printf “ main started\n”

> cont

> end

ELC-SD-0919-24 Copyright 2019, The PTR Group, LLC

Stepping Through Code
• gdb has a number of ways to step through

the code after encountering a breakpoint

• Step – step one line and step into functions

• Next – step one line and step over functions

• Finish – you stepped into a function
accidentally and you want to finish
this routine

• Stepi – step one assembly language instruction
and step into function calls

• Nexti – step one assembly language instruction
but step over function calls

ELC-SD-0919-25 Copyright 2019, The PTR Group, LLC

Watchpoints
• Force a program break when a selected variable’s value changes

• Examples:
watch –l <address/symbol> command is scope aware

rwatch <a/s> stops if the address is read

watch <a/s> thread 3 stops if thread 3 modifies

watch <a/s> if <a/s> > 5 stops when contents > 5

• Show old and new value and location in code that caused the change in value
(gdb) b main

(gdb) run

(gdb) watch x

(gdb) cont

Hardware watchpoint 2: x

Old value = 13451357

New value = 10

Main() at watch.c:10

ELC-SD-0919-26 Copyright 2019, The PTR Group, LLC

Debugging Threads
• Show active thread ids

(gdb) info threads

• Select a thread by id
(gdb) thread n

• Restrict breakpoint to a particular thread
(gdb) break <break ident> thread <id>

– Not specifying a thread ID will cause the breakpoint to apply to all threads

• Show backtraces for all threads:
(gdb) thread apply all bt

• Restrict thread execution to current thread
(gdb) set scheduler-locking on | off

ELC-SD-0919-27

Source: optusnet.com.au

Copyright 2019, The PTR Group, LLC

Generating “Core Dumps”

• When an application terminates abnormally, a
core file can be generated
– core file - (n.) A file created when a program malfunctions

and terminates. The core file holds a snapshot of
memory, taken at the time the fault occurred. This file
can be used to determine the cause of the malfunction

• By default, this feature is disabled to preclude
“core droppings” in the file system
– Use:
$ ulimit –c <max core file size in disk sectors>

to re-enable core file generation

ELC-SD-0919-28

Source: heartrails.com

Copyright 2019, The PTR Group, LLC

Using the Core File

• Once you have a core file, you can use gdb to try to
determine what went wrong

• Load the core file using:
$ gdb <application name> -core <corefile>

• gdb will load the application and will show you the point
of failure

• This will also work with most gdb front-ends
– eclipse

– ddd

– Insight

ELC-SD-0919-29 Copyright 2019, The PTR Group, LLC

Remote Debugging with gdb/gdbserver
• The DWARF debug format does

not change because we’re using an
alternate processor type

• We will load the code to be debugged
into the local gdb session and then
connect with the remote gdbserver
– Communications with the gdbserver helps keep the gdb session in

sync

• The application to be debugged runs under the control of the
gdbserver application
– Uses ptrace() functions to control starting and stopping of the

target application

ELC-SD-0919-30

Source: codeproject.com

Copyright 2019, The PTR Group, LLC

gdb/gdbserver Cross Debug Example

• For example:
– On the target:
$ gdbserver 192.168.7.1:1929 myapp &

– On the host:
(gdb) target remote 192.168.7.2:1929

• gdbserver can attach to a running program
$ gdbserver hostIP:2345 --attach PID

• Works within GUI-based front-ends as well
– You must tell gdb which back-end to use

$ ddd –debugger arm-linux-gnueabi-gdb myapp

ELC-SD-0919-31 Copyright 2019, The PTR Group, LLC

strace/ltrace

• Using tools like atsar, top, gkrellm, etc. will give you
an idea as to what your system is doing globally.
You can now focus on system call and library call
tracing
– strace and ltrace

• These require no special compilation flags
– They can be attached to a running application at any time

– They support time tagging for crude performance
monitoring

Copyright 2019, The PTR Group, LLCELC-SD-0819-32

Using strace to Watch System Calls

• When debugging what appears to be a kernel-space
error, it can be helpful to watch the system calls that
are made from user-space
– See what events lead to the

error

• strace displays all system
calls made by a program
– Can display timestamp

information per system call as well Source: diy.despair.com

Copyright 2019, The PTR Group, LLCELC-SD-0819-33

Example strace Output
/ # strace ls /dev/labdev

execve("/bin/ls", ["ls", "/dev/labdev"], [/* 8 vars */]) = 0

fcntl64(0, F_GETFD) = 0

fcntl64(1, F_GETFD) = 0

fcntl64(2, F_GETFD) = 0

geteuid() = 0

getuid() = 0

getegid() = 0

getgid() = 0

brk(0) = 0x1028ad68

brk(0x1028bd68) = 0x1028bd68

brk(0x1028c000) = 0x1028c000

ioctl(1, TIOCGWINSZ or TIOCGWINSZ, {ws_row=0, ws_col=0, ws_xpixel=0, ws_ypixel=0

ioctl(1, TCGETS or TCGETS, {B9600 opost isig icanon echo ...}) = 0

ioctl(1, TCGETS or TCGETS, {B9600 opost isig icanon echo ...}) = 0

lstat("/dev/labdev", {st_mode=S_IFCHR|0644, st_rdev=makedev(254, 0), ...}) = 0

open("/etc/localtime", O_RDONLY) = -1 ENOENT (No such file or directory)

lstat("/dev/labdev", {st_mode=S_IFCHR|0644, st_rdev=makedev(254, 0), ...}) = 0

fstat64(1, {st_mode=S_IFCHR|0600, st_rdev=makedev(4, 64), ...}) = 0

ioctl(1, TCGETS or TCGETS, {B9600 opost isig icanon echo ...}) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x300

write(1, "\33[1;35m/dev/labdev\33[0m\n", 23/dev/labdev) = 23

munmap(0x30000000, 4096) = 0

Exit(0) = ?

Copyright 2019, The PTR Group, LLCELC-SD-0819-34

strace – Where is time being spent?
• Use –c option while invoking the app

• Example – v4l2-based application
$ strace -c ./capture_stream -D /dev/video0 -w 640*480 -p 1|./viewer -w 640*480 -p 1

% time seconds usecs/call calls errors syscall

------ ----------- ----------- --------- --------- ----------------

86.40 0.054382 365 149 write

9.53 0.005999 41 148 select

3.85 0.002425 8 310 2 ioctl

0.21 0.000133 10 13 mmap

0.00 0.000000 0 1 read

0.00 0.000000 0 3 open

0.00 0.000000 0 2 close

0.00 0.000000 0 1 stat

0.00 0.000000 0 3 fstat

0.00 0.000000 0 4 mprotect

0.00 0.000000 0 1 munmap

0.00 0.000000 0 3 brk

0.00 0.000000 0 3 3 access

0.00 0.000000 0 1 execve

0.00 0.000000 0 1 arch_prctl

------ ----------- ----------- --------- --------- ----------------

100.00 0.062939 643 5 total

• Most of the time is consumed in the write call

Copyright 2019, The PTR Group, LLCELC-SD-0819-35

ltrace

• Just as strace allows us to trace system calls, ltrace
allows us to trace library calls
– You do not have to have the source nor compile the library for

debugging to do this

• Can be used to trace glibc interaction
– But be prepared to get a *lot* of output

• Command-line options exist to limit which libraries you
are interested in tracing
– Other options are similar to strace

• The output looks like strace

Copyright 2019, The PTR Group, LLCELC-SD-0819-36

Procfs

• Procfs is a representation of the kernel’s information

about each process/thread and about the system

itself

• Each process ID has its own directory with

information about memory usage, processor affinity,

child threads and more

• Many system tuning parameters for the protocol

stack and interrupts are here as well

Copyright 2019, The PTR Group, LLCELC-SD-0819-37

What is Valgrind?
• Valgrind is an instrumentation framework for building dynamic

analysis tools
– Built to be user extensible

• It is widely used by Linux developers

• Valgrind tools can automatically detect potential memory
management and threading problems

• Has tools for providing profiling data

• Mainly supports C and C++ programs

• Licensed under GPL v2

• Documentation is at http://valgrind.org/doc
Source: valgrind.org

Copyright 2019, The PTR Group, LLCELC-SD-0819-38

http://valgrind.org/doc

Valgrind
• Collection of user-space analysis tools

• Embedded options are now available
for PPC and ARM

• Traditionally built and run under x86 for
analysis then transfer to target

– Memcheck – memory leaks etc.

– Cachegrind – cache and locality of
reference

– Callgrind – caller/callee relationships

– Massif – heap profiler

– Helgrind – POSIX threads helper

– DRD – Multi threaded C/C++ detector

$ valgrind –vgdb=full -–vgdb-error=0 ./prog
– Runs gdb server inside of Valgrind that you can connect remotely to

Source: alexott.net

Copyright 2019, The PTR Group, LLCELC-SD-0819-39

Zooming in on User Space: gprof
• gprof is included as part of the GNU utilities

– The GNU compiler instruments your code to collect execution information

• Compile the code with the -pg compiler flag
– Then run the application to collect the information

• Make sure that the application exits properly

• Compile the code with the -pg compiler flag and run it
$ gcc -o myprog myprog.c utils.c -g -pg

• Then run gprof:
$ gprof options [executable file [profile data file]]

– The options control the type of output that gprof produces, possible symbols to
ignore, etc.

• The resulting gmon.out file contains the profiling information
– Viewable as a flat output, call graph or annotated source

Copyright 2019, The PTR Group, LLCELC-SD-0819-40

Profiling Via Code Coverage

• Another possibility is that your code
has different use cases
– Being able to tell what code actually

ran can help zero in on specific test
cases

• To help with this, the GNU tools have gcov
– The GNU code coverage tool

• Requires the -fprofile-arcs
–ftest-coverage compiler options

– Produces an output file with the source annotated with how
many times each line of code was executed

Source: ibm.com

Copyright 2019, The PTR Group, LLCELC-SD-0819-41

Example gcov Execution
$ gcc -fprofile-arcs -ftest-coverage tmp.c –o tmp

$./tmp

$ gcov tmp.c

90.00% of 10 source lines executed in file tmp.c

Creating tmp.c.gcov.

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

#####: 13: printf ("Failure\n");

-: 14: else

1: 15: printf ("Success\n");

1: 16: return 0;

1: 17:}

The number on the left indicates the number of times that line was executed

The ##### indicates a line that was not executed

Copyright 2019, The PTR Group, LLCELC-SD-0819-42

Branch Annotated Source
The annotated source code would then look like:

-: 0:Source:tmp.c

-: 0:Object:tmp.bb

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

branch 0: taken 90%

branch 1: taken 100%

branch 2: taken 100%

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

branch 0: taken 100%

#####: 13: printf ("Failure\n");

call 0: never executed

branch 1: never executed

-: 14: else

1: 15: printf ("Success\n");

call 0: returns 100%

1: 16: return 0;

1: 17:}

Source: postography.com

Copyright 2019, The PTR Group, LLCELC-SD-0819-43

LTTng 2.x

• “Linux Trace Toolkit – next generation”
– Traces both user and kernel events

• Can be used as a fast strace replacement

– Gathers from multiple sources
• Tracepoint, kprobes, perf monitors for kernel

• Supports instrumentation in user and kernel space

– Outputs to a common format
• Supports the “Common Trace Format” (CTF)

• Multiple viewers will be able to read output

– Babeltrace, Eclipse LTTng plugin (currently available)

– LTTV Viewer, (work in progress)

Source: lttng.org

Copyright 2019, The PTR Group, LLCELC-SD-0819-44

LTTng Tracer Architecture

Source: lttng.org

Copyright 2019, The PTR Group, LLCELC-SD-0819-45

LTTng-UST

• LTTng-UST (User Space Tracer) designed to

provide detailed information about user space

activity

• Port of the LTTng kernel tracer to user space

• Tracing does not require system calls or traps

• LTTng-UST instrumentation points can be added in

applications including signal handlers and libraries

Copyright 2019, The PTR Group, LLCELC-SD-0819-46

LTTng Eclipse Plug-in

Copyright 2019, The PTR Group, LLCELC-SD-0819-47

OProfile

• OProfile is a kernel-based, statistical profiler
– Samples instruction pointer to figure out what’s running

• Records current symbol and owner task

• Can also track cache misses

– Must be enabled in the kernel and rebuilt

• It’s useful for seeing where in the kernel your
applications are spending their time
– There is a collection of userspace helpers that help control

and display the OProfile data

Copyright 2019, The PTR Group, LLCELC-SD-0819-48

OProfile Sample Output
• The OProfile data capture is made available via a /proc entry

– The opreport command reads the data and creates a report

samples % app name symbol name

10469 34.0146 no-vmlinux (no symbols)

4358 14.1595 libxul.so (no symbols)

4306 13.9905 libmozjs.so (no symbols)

3000 9.7472 libc-2.8.90.so (no symbols)

1185 3.8502 libglib-2.0.so.0.1800.2 (no symbols)

895 2.9079 libflashplayer.so (no symbols)

626 2.0339 libpixman-1.so.0.12.0 (no symbols)

588 1.9105 libnspr4.so.0d (no symbols)

468 1.5206 bash (no symbols)

457 1.4848 libpthread-2.8.90.so pthread_mutex_lock

454 1.4751 Xorg (no symbols)

401 1.3029 fglrx_dri.so (no symbols)

Copyright 2019, The PTR Group, LLCELC-SD-0819-49

What is Ftrace?
• Ftrace (function tracer) was developed largely

by Steven Rostedt and a few other key
kernel developers
– The primary focus was

embedded Linux and the
PREEMPT_RT real-time patches in the kernel

• Ftrace was introduced into the kernel in 2008
as a way of providing debugging info
– Allowed for time stamps, calling hierarchies and more

• Well beyond the typical printk()

• The documentation was actually in the kernel before the
code!

Source: facesofopensource.com

Copyright 2019, The PTR Group, LLCELC-SD-0819-50

What is Ftrace? #2
• ftrace provides tracing for internal kernel operations

– Static tracepoints via event tracing for
• interrupts, scheduling, file systems and more

• Latencies for interrupts, preemption and combined

• Process wakeup latencies with filtering for RT processes

– Dynamic kernel function tracing
• Tracing any function within kernel

• Function filtering

• Call graphs

• Stack usage and frames

• Many more tracepoints

• ftrace is a feature consolidated tool based or prior tracing facilities in
the kernel

• Like OProfile, ftrace must be enabled in the kernel

Copyright 2019, The PTR Group, LLCELC-SD-0819-51

Graphing the Data via Kernelshark

• kernelshark is a
GUI that reads and
plots the data from
ftrace

• Graphical output
that is easy to
include in reports

• Kernelshark v1.0 is
now out!
– Based on Qt instead of original GTK version

Source: kernelshark.org

Copyright 2019, The PTR Group, LLCELC-SD-0819-52

Summary

• The problem with Linux is not that there aren’t enough
tools, but there are too many
– Some overlap as well

• Debugging is at least mostly done with gdb
– However, never underestimate the power of a lowly LED and an

oscilloscope

• gprof/gcov and strace/ltrace provide additional insights

• Then, ftrace/LTTng can show additional interactions with
kernel space for a system-wide view

Copyright 2019, The PTR Group, LLCELC-SD-0819-53

