
Learn Bitbake with Yocto Project

Tom King
Behan Webster

The Linux Foundation
Mar 15, 2018

(CC BY-SA 4.0)
1

 E-ALE ELC 2018

The URL for this presentation

https://goo.gl/RcmEqL

Yocto/Openembedded Terms
➢ Yocto Project is a large collaboration project
➢ OpenEmbedded is providing most metadata
➢ Bitbake is the build tool
➢ Poky is the Yocto Project's reference

distribution
➢ Poky contains a version of bitbake and oe-core

from which you can start your project

3

Yocto Project Overview
➢ Collection of tools and methods enabling

◆ Rapid evaluation of embedded Linux on many popular
off-the-shelf boards

◆ Easy customization of distribution characteristics
➢ Supports x86, ARM, MIPS, Power
➢ Based on technology from the OpenEmbedded Project
➢ Layer architecture allows for

easy re-use of code

4

meta (oe-core)

meta-poky

meta-yocto-bsp

other layers

Yocto is based on OpenEmbedded-core

5

Metadata describing
approximately 1000 "core"
recipes used for building boot
images. Includes support for
graphics, Qt, networking, kernel
recipes, tools, much more.

What is Bitbake?
➢ Bitbake

◆ Powerful and flexible
build engine (Python)

◆ Reads metadata
◆ Determines

dependencies
◆ Schedules tasks

6

Metadata – a structured
collection of "recipes" which
tell BitBake what to build,
organized in layers

Poky Reference Distro
➢ Contains core components

◆ Bitbake tool: A python-based build engine
◆ Build scripts (infrastructure)
◆ Foundation package recipes (oe-core)
◆ meta-poky (Contains distribution policy)

◆ Reference BSPs
◆ Yocto Project

documentation

Build System Workflow

8

BITBAKE

This section will introduce the concept of the bitbake build tool
and how it can be used to build recipes

9

Metadata and bitbake
➢Most common form of metadata: The Recipe(*.bb files)
➢ A Recipe provides a “list of ingredients” and “cooking

instructions”
➢ Defines settings and a set of tasks used by bitbake to build

binary packages

busybox

glibc

sysvinit
coreutils

libgtk

Metadata
BitBake

➢ Metadata exists in four general categories:
➢ Recipes (*.bb)

◆ Usually describe build instructions for a single package

➢ PackageGroups (special *.bb)
◆ Often used to group packages together for a FS image

➢ Classes (*.bbclass)
◆ Inheritance mechanism for common functionality

➢ Configuration (*.conf)
◆ Drives the overall behavior of the build process

What is Metadata?

➢ Append files (*.bbappend)
◆ Define additional metadata for a similarly named .bb file
◆ Can add or override previously set values

➢ Include files (*.inc)
◆ Files which are used with the include directive
◆ Include files are typical found via the BBPATH variable

Other Metadata

OE-CORE Breakdown

13

 *.bb: 828
 *.bbappend: 69
packagegroup*: 24
 *.bbclass: 188
 *.conf: 98
 *.inc: 275

Introduction to Bitbake
➢ Bitbake is a task executor and scheduler
➢ By default the build task for the specified recipe is executed

$ bitbake myrecipe

➢ You can indicate which task you want run

$ bitbake -c clean myrecipe
$ bitbake -c cleanall myrecipe

➢ You can get a list of tasks with

$ bitbake -c listtasks myrecipe

Bitbake is a Task Scheduler
➢ Bitbake builds recipes by scheduling build tasks in parallel

$ bitbake recipe
This looks for recipe_*.bb in BBFILES

➢ Each recipe defines build tasks, each which can depend on
other tasks

➢ Recipes can also depend on other recipes, meaning more
than one recipe may be built

➢ Tasks from more than one recipe are often executed in
parallel at once on multi-cpu build machines

15

Building Recipes
➢ By default the highest version of a recipe is built (can be overridden

with DEFAULT_PREFERENCE or PREFERRED_VERSION metadata)

$ bitbake myrecipe
➢ You can specify the version of the package you want built

(version of upstream source)
$ bitbake myrecipe-1.0

➢ You can also build a particular revision of the package
metadata
$ bitbake myrecipe-1.0-r0

➢ Or you can provide a recipe file to build
$ bitbake -b mydir/myrecip.bb

Building Images
➢ When you do a really big build, running with --continue (-k)

means bitbake will proceed as far as possible after finding an
error
$ bitbake -k core-image-minimal
◆ When running a long build (e.g. overnight) you want as

much of the build done as possible before debugging
issues

➢ Running bitbake normally will stop on the first error found
$ bitbake core-image-minimal

➢ We'll look at debugging recipe issue later...

Running Bitbake: Default Tasks*

Create binary package(s)

do_fetch

do_unpack

do_patch

do_configure

do_install

do_compile

*Simplified for illustration

Note: to see the list of all possible tasks for a recipe, do this:
$ bitbake -c listtasks <recipe_name>

do_populate_sysroot

do_package_*

Locate and download source code

Unpack source into working directory

Apply any patches

Perform any necessary pre-build configuration

Compile the source code

Installation of resulting build artifacts in WORKDIR

Copy artifacts to sysroot

Running Bitbake: Task Log

19*Simplified for illustration

$ bitbake hello
NOTE: Running task 337 of 379 (ID: 4, hello_1.0.0.bb, do_fetch)
NOTE: Running task 368 of 379 (ID: 0, hello_1.0.0.bb, do_unpack)
NOTE: Running task 369 of 379 (ID: 1, hello_1.0.0.bb, do_patch)
NOTE: Running task 370 of 379 (ID: 5, hello_1.0.0.bb, do_configure)
NOTE: Running task 371 of 379 (ID: 7, hello_1.0.0.bb, do_populate_lic)
NOTE: Running task 372 of 379 (ID: 6, hello_1.0.0.bb, do_compile)
NOTE: Running task 373 of 379 (ID: 2, hello_1.0.0.bb, do_install)
NOTE: Running task 374 of 379 (ID: 11, hello_1.0.0.bb, do_package)
NOTE: Running task 375 of 379 (ID: 3, hello_1.0.0.bb, do_populate_sysroot)
NOTE: Running task 376 of 379 (ID: 8, hello_1.0.0.bb, do_packagedata)
NOTE: Running task 377 of 379 (ID: 12, hello_1.0.0.bb, do_package_write_ipk)
NOTE: Running task 378 of 379 (ID: 9, hello_1.0.0.bb, do_package_qa)

*Output has been formatted to fit this slide.

SSTATE CACHE
➢ Several bitbake tasks can use past versions of build artefacts if

there have been no changes since the last time you built them

20

do_packagedata Creates package metadata used by the build system to generate the final
packages

do_package Analyzes the content of the holding area and splits it into subsets based
on available packages and files

do_package_write_rpm Creates the actual RPM packages and places them in the Package Feed
area

do_populate_lic Writes license information for the recipe that is collected later when the
image is constructed

do_populate_sysroot Copies a subset of files installed by do_install into the sysroot in order to
make them available to other recipes

Simple recipe build from sstate cache*

21*Simplified for illustration

$ bitbake -c clean hello
$ bitbake hello
NOTE: Running setscene task 69 of 74 (hello_1.0.0.bb, do_populate_sysroot_setscene)
NOTE: Running setscene task 70 of 74 (hello_1.0.0.bb, do_populate_lic_setscene)
NOTE: Running setscene task 71 of 74 (hello_1.0.0.bb, do_package_qa_setscene)
NOTE: Running setscene task 72 of 74 (hello_1.0.0.bb, do_package_write_ipk_setscene)
NOTE: Running setscene task 73 of 74 (hello_1.0.0.bb, do_packagedata_setscene)

*Output has been formatted to fit this slide.

RECIPES

This section will introduce the concept of metadata and recipes
and how they can be used to automate the building of packages

22

What is a Recipe?
➢ A recipe is a set of instructions for building packages,

including:
◆ Where to obtain the upstream sources and which patches to

apply (this is called “fetching”)
o SRC_URI

◆ Dependencies (on libraries or other recipes)
o DEPENDS, RDEPENDS

◆ Configuration/compilation options
o EXTRA_OECONF, EXTRA_OEMAKE

◆ Define which files go into what output packages
o FILES_*

23

Example Recipe – ethtool_3.15.bb

24

What can a Recipe Do?
➢ Build software from source code:
◆ Host tools, compiler, utilities
◆ Target Bootloader, Kernel, etc
◆ Target Libraries, interpreters, etc
◆ Target Userspace applications

➢ Package Groups
➢ Full System Images

25

Examining Recipes: bc
➢ Look at 'bc' recipe:
➢ Found in

poky/meta/recipes-extended/bc/bc_1.06.bb
◆ Uses LIC_FILES_CHKSUM and SRC_URI checksums
◆ Note the DEPENDS build dependency declaration

indicating that this package depends on flex to
build

26

Examining Recipes: bc.bb
SUMMARY = "Arbitrary precision calculator language"
HOMEPAGE = "http://www.gnu.org/software/bc/bc.html"

LICENSE = "GPLv2+ & LGPLv2.1"
LIC_FILES_CHKSUM = "file://COPYING;md5=94d55d512a9ba36caa9b7df079bae19f \
 file://COPYING.LIB;md5=d8045f3b8f929c1cb29a1e3fd737b499 \
 file://bc/bcdefs.h;endline=31;md5=46dffdaf10a99728dd8ce358e45d46d8 \
 file://dc/dc.h;endline=25;md5=2f9c558cdd80e31b4d904e48c2374328 \
 file://lib/number.c;endline=31;md5=99434a0898abca7784acfd36b8191199"
SECTION = "base"
DEPENDS = "flex"

SRC_URI = " ${GNU_MIRROR}/bc/bc-${PV}.tar.gz \
 file://fix-segment-fault.patch "
SRC_URI[md5sum] = "d44b5dddebd8a7a7309aea6c36fda117"
SRC_URI[sha256sum] = "4ef6d9f17c3c0d92d8798e35666175ecd3d8efac4009d6457b5c99cea72c0e33"

inherit autotools texinfo update-alternatives

ALTERNATIVE_${PN} = "dc"
ALTERNATIVE_PRIORITY = "100"
BBCLASSEXTEND = "native"

27

Building upon bbclass
➢ Use inheritance for common design patterns
➢ Provide a class file (.bbclass) which is then inherited

by other recipes (.bb files)
inherit autotools
◆ Bitbake will include the autotools.bbclass file
◆ Found in a classes directory via the BBPATH

28

Examining Recipes: flac
➢ Look at 'flac' recipe
➢ Found in

poky/meta/recipes-multimedia/flac/flac_1.3.2.bb
◆ Inherits from both autotools and gettext
◆ Customizes autoconf configure options (EXTRA_OECONF)

based on "TUNE" features
◆ Breaks up output into multiple binary packages

● See PACKAGES var. This recipe produces additional packages with
those names, while the FILES_* vars specify which files go into these
additional packages

29

Examining Recipes: flac.bb
SUMMARY = "Free Lossless Audio Codec"
DESCRIPTION = "FLAC stands for Free Lossless Audio Codec, a lossless audio compression format."
HOMEPAGE = "https://xiph.org/flac/"
BUGTRACKER = "http://sourceforge.net/p/flac/bugs/"
SECTION = "libs"
LICENSE = "GFDL-1.2 & GPLv2+ & LGPLv2.1+ & BSD"
LIC_FILES_CHKSUM = "file://COPYING.FDL;md5=ad1419ecc56e060eccf8184a87c4285f \
 file://src/Makefile.am;beginline=1;endline=17;md5=09501c864f89dfc7ead65553129817ca \
 file://COPYING.GPL;md5=b234ee4d69f5fce4486a80fdaf4a4263 \
 file://src/flac/main.c;beginline=1;endline=18;md5=09777e2934947a36f13568d0beb81199 \
 file://COPYING.LGPL;md5=fbc093901857fcd118f065f900982c24 \
 file://src/plugin_common/all.h;beginline=1;endline=18;md5=f56cb4ba9a3bc9ec6102e8df03215271 \
 file://COPYING.Xiph;md5=b59c1b6d7fc0fb7965f821a3d36505e3 \
 file://include/FLAC/all.h;beginline=65;endline=70;md5=64474f2b22e9e77b28d8b8b25c983a48"
DEPENDS = "libogg"
SRC_URI = "http://downloads.xiph.org/releases/flac/${BP}.tar.xz"
SRC_URI[md5sum] = "454f1bfa3f93cc708098d7890d0499bd"
SRC_URI[sha256sum] = "91cfc3ed61dc40f47f050a109b08610667d73477af6ef36dcad31c31a4a8d53f"

(con't next page)
30

Examining Recipes: flac.bb (con't)
(con't from previous page)

CVE_PRODUCT = "libflac"
inherit autotools gettext
EXTRA_OECONF = "--disable-oggtest \
 --with-ogg-libraries=${STAGING_LIBDIR} \
 --with-ogg-includes=${STAGING_INCDIR} \
 --disable-xmms-plugin \
 --without-libiconv-prefix \
 ac_cv_prog_NASM="" \
 "
EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "altivec", " --enable-altivec", " --disable-altivec",
d)}"
EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "core2", " --enable-sse", "", d)}"
EXTRA_OECONF += "${@bb.utils.contains("TUNE_FEATURES", "corei7", " --enable-sse", "", d)}"
PACKAGES += "libflac libflac++ liboggflac liboggflac++"
FILES_${PN} = "${bindir}/*"
FILES_libflac = "${libdir}/libFLAC.so.*"
FILES_libflac++ = "${libdir}/libFLAC++.so.*"
FILES_liboggflac = "${libdir}/libOggFLAC.so.*"
FILES_liboggflac++ = "${libdir}/libOggFLAC++.so.*"

31

Grouping Local Metadata
➢ Sometimes sharing metadata between recipes is

easier via an include file
include file.inc
◆ Will include .inc file if found via BBPATH
◆ Can also specify an absolute path
◆ If not found, will continue without an error
require file.inc
◆ Same as an include
◆ Fails with an error if not found

32

Examining Recipes: ofono
➢ Look at 'ofono' recipe(s):
➢ Found in

poky/meta/recipes-connectivity/ofono/ofono_1.19.bb
◆ Splits recipe into common .inc file to share common

metadata between multiple recipes
◆ Sets a conditional build configuration options through the

PACKAGECONFIG var based on a DISTRO_FEATURE (in
the .inc file)

◆ Sets up an init service via do_install_append()
◆ Has a _git version of the recipe (not shown)

33

Examining Recipes: ofono.bb
require ofono.inc

SRC_URI = "\
 ${KERNELORG_MIRROR}/linux/network/${BPN}/${BP}.tar.xz \
 file://ofono \
"
SRC_URI[md5sum] = "a5f8803ace110511b6ff5a2b39782e8b"
SRC_URI[sha256sum] =
"a0e09bdd8b53b8d2e4b54f1863ecd9aebe4786477a6cbf8f655496e8edb31c81"

CFLAGS_append_libc-uclibc = " -D_GNU_SOURCE"

34

Examining Recipes: ofono.inc
HOMEPAGE = "http://www.ofono.org"
SUMMARY = "open source telephony"
DESCRIPTION = "oFono is a stack for mobile telephony devices on Linux. oFono supports speaking to telephony devices through
specific drivers, or with generic AT commands."
LICENSE = "GPLv2"
LIC_FILES_CHKSUM = "file://COPYING;md5=eb723b61539feef013de476e68b5c50a \
 file://src/ofono.h;beginline=1;endline=20;md5=3ce17d5978ef3445def265b98899c2ee"

inherit autotools pkgconfig update-rc.d systemd bluetooth

DEPENDS = "dbus glib-2.0 udev mobile-broadband-provider-info"

INITSCRIPT_NAME = "ofono"
INITSCRIPT_PARAMS = "defaults 22"

PACKAGECONFIG ??= "\
${@bb.utils.filter('DISTRO_FEATURES', 'systemd', d)} \
${@bb.utils.contains('DISTRO_FEATURES', 'bluetooth', 'bluez', '', d)} \
"

PACKAGECONFIG[systemd] = "--with-systemdunitdir=${systemd_unitdir}/system/,--with-systemdunitdir="
PACKAGECONFIG[bluez] = "--enable-bluetooth, --disable-bluetooth, ${BLUEZ}"

(con't next page)
35

Examining Recipes: ofono.inc
(con't from previous page)
EXTRA_OECONF += "--enable-test"

SYSTEMD_SERVICE_${PN} = "ofono.service"

do_install_append() {
 install -d ${D}${sysconfdir}/init.d/
 install -m 0755 ${WORKDIR}/ofono ${D}${sysconfdir}/init.d/ofono

 # Ofono still has one test tool that refers to Python 2 in the shebang
 sed -i -e '1s,#!.*python.*,#!${bindir}/python3,' ${D}${libdir}/ofono/test/set-ddr

}

PACKAGES =+ "${PN}-tests"
RDEPENDS_${PN} += "dbus"
RRECOMMENDS_${PN} += "kernel-module-tun mobile-broadband-provider-info"

FILES_${PN} += "${systemd_unitdir}"
FILES_${PN}-tests = "${libdir}/${BPN}/test"
RDEPENDS_${PN}-tests = "python3 python3-pygobject python3-dbus"

36

WHEN THINGS GO WRONG

Some useful tools to help guide you when something goes wrong

37

Bitbake Environment
➢ Each recipe has its own environment which

contains all the variables and methods required to
build that recipe

➢ You've seen some of the variables already
◆ DESCRIPTION, SRC_URI, LICENSE, S,

LIC_FILES_CHKSUM, do_compile(), do_install()
➢ Example

◆ S = "${WORKDIR}"
◆ What does this mean?

Examine a Recipe's Environment
➢ To view a recipe's envrionment

$ bitbake -e myrecipe
➢ Where is the source code for this recipe"

$ bitbake -e virtual/kernel | grep “^S=”
S="${HOME}/yocto/build/tmp/work-shared/qemuarm/kernel-source"

➢ What file was used in building this
recipe?

$ bitbake -e netbase | grep “^FILE=”
FILE="${HOME}/yocto/poky/meta/recipes-core/netbase/netbase_5.3.bb"

39

Examine a Recipe's Environment (cont'd)

➢ What is this recipe's full version string?
$ bitbake -e netbase | grep “^PF=”
PF="netbase-1_5.3-r0"
➢ Where is this recipe's BUILD directory?

$ bitbake -e virtual/kernel | grep “^B=”
B="${HOME}/yocto/build/tmp/work/qemuarm-poky-linux-\
gnueabi/linux-yocto/3.19.2+gitAUTOINC+9e70b482d3\
_473e2f3788-r0/linux-qemuarm-standard-build"
➢ What packages were produced by this recipe?

$ bitbake -e virtual/kernel | grep “^PACKAGES=”
PACKAGES="kernel kernel-base kernel-vmlinux kernel-image \
kernel-dev kernel-modules kernel-devicetree"

40

BitBake Log Files
➢ Every build produces lots of log output for diagnostics

and error chasing
◆ Verbose log of bitbake console output:

o Look in …/tmp/log/cooker/<machine>
$ cat tmp/log/cooker/qemuarm/20160119073325.log | grep 'NOTE:.*task.*Started'
NOTE: recipe hello-1.0.0-r0: task do_fetch: Started
NOTE: recipe hello-1.0.0-r0: task do_unpack: Started
NOTE: recipe hello-1.0.0-r0: task do_patch: Started
NOTE: recipe hello-1.0.0-r0: task do_configure: Started
NOTE: recipe hello-1.0.0-r0: task do_populate_lic: Started
NOTE: recipe hello-1.0.0-r0: task do_compile: Started
NOTE: recipe hello-1.0.0-r0: task do_install: Started
NOTE: recipe hello-1.0.0-r0: task do_populate_sysroot: Started
NOTE: recipe hello-1.0.0-r0: task do_package: Started
NOTE: recipe hello-1.0.0-r0: task do_packagedata: Started
NOTE: recipe hello-1.0.0-r0: task do_package_write_rpm: Started
NOTE: recipe hello-1.0.0-r0: task do_package_qa: Started
NOTE: recipe ypdd-image-1.0-r0: task do_rootfs: Started

41

BitBake Per-Recipe Log Files
➢ Every recipe produces lots of log output for

diagnostics and debugging
➢ Use the Environment to find the log files for a

given recipe:
$ bitbake -e hello | grep “^T=”
T="${HOME}yocto/build/tmp/work/armv5e-poky-linux-gnueabi/hello/1.0.0-r0/temp"

➢ Each task that runs for a recipe produces "log"
and "run" files in
${WORKDIR}/temp

42

BitBake Per-Recipe Log Files
$ cd ${T} (See definition of T in previous slide)
$ find . -type l -name 'log.*'
./log.do_package_qa
./log.do_package_write_rpm
./log.do_package
./log.do_fetch
./log.do_populate_lic
./log.do_install
./log.do_configure
./log.do_unpack
./log.do_populate_sysroot
./log.do_compile
./log.do_packagedata
./log.do_patch

43

These files contain the output of the respective tasks for each recipe

BitBake Per-Recipe Log Files
$ cd ${T} (See definition of T in previous slide)
$ find . -type l -name 'run.*'
./run.do_fetch
./run.do_patch
./run.do_configure
./run.do_populate_sysroot
./run.do_package_qa
./run.do_unpack
./run.do_compile
./run.do_install
./run.do_packagedata
./run.do_populate_lic
./run.do_package
./run.do_package_write_rpm

44

These files contain the commands executed which produce the build results

LAYERS

This section will introduce the concept of layers and how
important they are in the overall build architecture

45

Layers
➢ Metadata is provided in a series of layers which allow you

to override any value without editing the originally
provided files

➢ A layer is a logical collection of metadata in the form of
recipes

➢ A layer is used to represent oe-core, a Board Support
Package (BSP), an application stack, and your new code

➢ All layers have a priority and can override policy, metadata
and config settings of layers with a lesser priority

46

Layer Hierarchy

47

meta (oe-core)

meta-poky

BSP layer

UI/GUI layer

Commercial layers (OSV or middleware)

Developer layer(s)

Notes on using Layers
➢ When doing development with Yocto, do not

edit files within the Poky source tree
➢ Use a new custom layer for modularity and

maintainability
➢ Layers also allow you to easily port from one

version of Yocto/Poky to the next version
➢ http://layers.openembedded.org <<---- This site is your friend

48

http://layers.openembedded.org

Board Support Packages
➢ BSPs are layers to enable support for specific

hardware platforms
➢ Defines machine configuration variables for the

board (MACHINE)
➢ Adds machine-specific recipes and customizations

◆ Boot loader
◆ Kernel config
◆ Graphics drivers (e.g, Xorg)
◆ Additional recipes to support hardware features

49

IMAGES

This section will introduce the concept of images; recipes
which build embedded system images

50

What is an Image?
➢ Building an image creates an entire Linux

distribution from source
◆ Compiler, tools, libraries
◆ BSP: Bootloader, Kernel
◆ Root filesystem:

● Base OS
● services
● Applications
● etc

51

Extending an Image
➢ You often need to create your own Image recipe

in order to add new packages or functionality
➢ With Yocto/OpenEmbedded it is always

preferable to extend an existing recipe or inherit a
class

➢ The simplest way is to inherit the core-image
bbclass

➢ You add packages to the image by adding them to
IMAGE_INSTALL

52

A Simple Image Recipe
➢ Create an images directory

$ mkdir -p ${HOME}/yocto/build/meta-ypdd/recipes-core/images

➢ Create the image recipe
$ vi ${HOME}/yocto/build/meta-ypdd/recipes-core/images/ypdd-image.bb

 DESCRIPTION = "A core image for YPDD"
 LICENSE = "MIT"

 # Core files for basic console boot
 IMAGE_INSTALL = "packagegroup-core-boot"

 # Add our desired packages
 IMAGE_INSTALL += "psplash dropbear"

 inherit core-image

 IMAGE_ROOTFS_SIZE ?= "8192"
53

 LAB

BUILDING A FULL EMBEDDED
IMAGE WITH Bitbake

55

Workflow
1. Download Yocto Project sources:

$ mkdir e-ale ; cd e-ale
$ wget http://downloads.yoctoproject.org/releases/yocto/yocto-2.3.2/poky-pyro-17.0.2.tar.bz2
$ tar xf poky-pyro-17.0.2.tar.bz2

◆ Can also use git and checkout a known branch e.g. morty
$ git clone -b pyro git://git.yoctoproject.org/poky.git

2. Build one of the reference Linux distributions:
$ source poky/oe-init-build-env build
◆ Check/Edit local.conf for sanity (e.g. modify MACHINE = "qemux86" or MACHINE = "qemuarm")
$ bitbake -k core-image-minimal

3. Run the image under emulation:
$ runqemu qemuarm

4. Profit!!! (well… actually there is more work to do...)

56

Host System Layout
$HOME/e-ale/
 |---build (or whatever name you choose)
 Project build directory
 |---downloads (DL_DIR)

 Downloaded source cache
 |---poky (Do Not Modify anything in here*)
 Poky, bitbake, scripts, oe-core, metadata
 |---sstate-cache (SSTATE_DIR)

 Binary build cache

57

* We will cover how to use layers to make changes later

oe-core (meta)

meta-poky

meta-yocto-bsp

Poky(reference) Layout
$HOME/e-ale/poky/

|---LICENSE
|---README
|---README.hardware
|---bitbake/ (The build tool)
|---documentation/
|---meta/ (oe-core)
|---meta-poky/ (Yocto distro metadata)
|---meta-yocto-bsp/ (Yocto Reference BSPs)
|---oe-init-build-env (Project setup script)
|---scripts/ (Scripts and utilities)

58

Note: A few files have been items omitted to facility the presentation on this slide

Setting up a Build Directory
➢ Start by setting up a build directory
◆ Local configuration
◆ Temporary build artifacts

$ cd $HOME/e-ale/
$ source ./poky/oe-init-build-env build

➢ Replace build with whatever directory name you want
to use for your project

➢ You need to re-run this script in any new terminal you
start (and don’t forget the project directory)

59

Build directory Layout
$HOME/e-ale/build/
|---bitbake.lock
|---cache/ (bitbake cache files)
|---conf/
| |--bblayers.conf (bitbake layers)
| |--local.conf (local configuration)
| `--site.conf (optional site conf)
`---tmp/ (Build artifacts)

60

Note: A few files have been items omitted to facility the presentation on this slide

Configuring Layers
➢ Layers are added to your build by inserting them into

the BBLAYERS variable within your bblayers file
$HOME/e-ale/build/conf/bblayers.conf

BBLAYERS ?= " \
 ${HOME}/e-ale/poky/meta \
 ${HOME}/e-ale/poky/meta-poky \
 ${HOME}/e-ale/poky/meta-yocto-bsp \
 "

61

Configure local.conf
➢ local.conf setup:

◆ Configure build by editing local.conf
◆ $HOME/e-ale/build/conf/local.conf

● Select appropriate MACHINE type (target)
● Set shared downloads directory (DL_DIR)
● Set shared state directory (SSTATE_DIR)

MACHINE = "qemuarm"
DL_DIR ?= "$HOME/e-ale/DOWNLOADS"
SSTATE_DIR ?= "$HOME/e-ale/SSTATE"
PACKAGE_CLASSES ?= "package_deb"
INHERIT += "rm_work"

62

Building an Embedded Image
➢ This builds an entire embedded Linux distribution
➢ Choose from one of the available Images
➢ The following builds a minimal embedded target

$ bitbake -k core-image-minimal

➢ On a fast computer the first build may take the better

part of an hour on a slow machine multiple ...
➢ The next time you build it (with no changes) it may

take as little as 5 mins (due to the shared state cache)

63

Booting Your Image with QEMU
➢ The runqemu script is used to boot the image with QEMU
➢ It auto-detects settings as much as possible, enabling the

following command to boot our reference images:
$ runqemu qemuarm [nographic]
◆ Use nographic if using a non-graphical session (ssh), do not type the

square brackets

➢ Replace qemuarm with your value of MACHINE
➢ Your QEMU instance should boot
➢ Quit by closing the qemu window
➢ If using “nographic”, kill it from another terminal:

$ killall qemu-system-arm
64

Build and Boot Your Custom Image
➢ Verify that dropbear ssh server is present
$ which dropbear

➢ If you used the graphical invocation of QEMU
using VNC viewer, you will see the splash
screen on boot.

65

BUILD AN APPLICATION

Adding a "hello world" application to our custom image

66

Building an Application
➢ General procedure:

◆ Write hello world application (hello.c)
◆ Create recipe for hello world application
◆ Modify image recipe to add hello world application

to your image
➢ What follows is the example of a simple one C

file application
➢ (Building a more complicated recipe from a tarball

would specify how to find the upstream source with
the SRC_URI)

67

Add Application Code
➢ For a simple one C file package, you can add

the hello application source to a directory
called files in the hello package directory

$ mkdir -p ${HOME}/e-ale/hello-recipe/files

$ vi ${HOME}/e-ale/hello-recipe/files/hello.c

68

Application Code

69

#include <stdio.h>

int main(int argc, char **argv) {
 printf("Hello World\n");
 return 0;
}

$ vi hello-recipe/files/hello.c

Add Application Recipe
➢ Write hello world recipe
➢ Create directory to hold the recipe and associated files
$ mkdir -p ${HOME}/e-ale/hello-recipe

− (We actually did this already in the previous step)

➢ Create hello_1.0.bb (next slide)

$ vi
${HOME}/e-ale/hello-recipe/hello_1.0.bb

70

Application Recipe

71

DESCRIPTION = "Hello World example"
LICENSE = "MIT"

LIC_FILES_CHKSUM =
"file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de2
0420"

S = "${WORKDIR}"

SRC_URI = "file://hello.c"

do_compile() {
 ${CC} ${CFLAGS} ${LDFLAGS} hello.c -o hello
}

do_install() {
 install -d -m 0755 ${D}/${bindir}
 install -m 0755 hello ${D}/${bindir}/hello
}

$ vi ${HOME}/e-ale/hello-recipe/hello_1.0.bb

Embedded Linux Development with Yocto Project
Training from The Linux Foundation

Want to learn how to use Yocto Project like a Pro?
https://training.linuxfoundation.org/

Embedded Linux Platform Development with Yocto Project
http://bit.ly/eldyocto

https://training.linuxfoundation.org/
http://bit.ly/eldyocto

TIPS HINTS AND OTHER RESOURCES

The following slides contain reference material that will
help you climb the Yocto Project learning curve

73

Common Gotchas When Getting Started
➢ Working behind a network proxy? Please follow this guide:

− https://wiki.yoctoproject.org/wiki/Working_Behind_a_
Network_Proxy

➢ Do not try to re-use the same shell environment when
moving between copies of the build system

➢ oe-init-build-env script appends to your $PATH, it's
results are cumulative and can cause unpredictable build
errors

➢ Do not try to share sstate-cache between hosts running
different Linux distros even if they say it works

74

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

Project Resources
➢ The Yocto Project is an open source project, and aims to deliver an

open standard for the embedded Linux community and industry
➢ Development is done in the open through public mailing lists:

openembedded-core@lists.openembedded.org,
poky@yoctoproject.org, and yocto@yoctoproject.org

➢ And public code repositories:
➢ http://git.yoctoproject.org and
➢ http://git.openembedded.org
➢ Bug reports and feature requests
➢ http://bugzilla.yoctoproject.org

75

mailto:yocto@yoctoproject.org
http://git.yoctoproject.org/
http://git.openembedded.org/
http://bugzilla.yoctoproject.org/

Tip: ack-grep
➢ Much faster than grep for the relevant use

cases
➢ Designed for code search
➢ Searches only relevant files

◆ Knows about many types: C, asm, perl
◆ By default, skips .git, .svn, etc.
◆ Can be taught arbitrary types

➢ Perfect for searching metadata
76

Tip: ack-grep

77

alias bback='ack-grep --type bitbake'

TIP: VIM Syntax Highlighting
➢ https://github.com/openembedded/bitbake/tree/master/contrib/vim

➢ Install files from the above repo in ~/.vim/

➢ Add "syntax on" in ~/.vimrc

$ tree ~/.vim/
/Users/chris/.vim/
├── ftdetect
│ └── bitbake.vim
├── ftplugin
│ └── bitbake.vim
├── plugin
│ └── newbb.vim
└── syntax
 └── bitbake.vim

78

https://github.com/openembedded/bitbake/tree/master/contrib/vim

TIP: VIM Syntax Highlighting

79

The other boards ...

80

dragonboard in one Slide
The dragonboard uses a 3rd-party repository.
1. Download repo tool:

$ mkdir -p ${HOME}/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ${HOME}/bin/repo
$ chmod a+x ${HOME}/bin/repo
$ export PATH=${HOME}/bin:${PATH}

2. Download the repositories with repo:
$ mkdir oe-qcom && cd oe-qcom
$ repo init -u https://github.com/96boards/oe-rpb-manifest.git -b pyro
$ repo sync
$ source setup-environment # SELECT the dragonboard

3. Build the image:
$ bitbake core-image-minimal

4. Profit!!! (well… actually there is more work to do...)

81

YP for the beaglebone

The following section introduces the beaglebone as
example hardware.

82

PocketBeagle in one Slide
1. Download poky tool:

$ mkdir -p ${HOME}/myproject
$ cd ${HOME}/myproject
$ wget -nd -c "http://downloads.yoctoproject.org/releases/yocto/yocto-2.3.2/poky-pyro-17.0.2.tar.bz2"
$ tar -xf poky-pyro-17.0.2.tar.bz2

2. Configure:$

$ source poky-morty-17.0.2/oe-init-build-env mybuild
$ echo 'MACHINE = "beaglebone" ' >> conf/local.conf

3. Build the image:
$ bitbake core-image-minimal

4. Profit!!! (well… actually there is more work to do...)

83

http://downloads.yoctoproject.org/releases/yocto/yocto-2.2/poky-morty-16.0.0.tar.bz2

beaglebone

84

End

HAVE FUN and thank you for joining !

85

 BITBAKE
 REFERENCE

Recipe Operators
A = “foo” (late assignment)
B ?= “0t” (default value)
C ??= “abc” (late default)
D := “xyz” (Immediate assignment)

A .= “bar” “foobar” (append)
B =. “WO” “W00t” (prepend)
C += “def” “abc def” (append)
D =+ “uvw” “uvw xyz” (prepend)

87

More Recipe Operators
A = “foo”
A_append = “bar” “foobar”
B = “0t”
B_prepend = “WO” “W00t”

OVERRIDES = “os:arch:machine”
A = “abc”
A_os = “ABC” (Override)
A_append_arch = “def” (Conditional append)
A_prepend_os = “XYZ” (Conditional prepend)

88

Bitbake Variables/Metadata
➢ These are set automatically by bitbake

◆ TOPDIR – The build directory
◆ LAYERDIR – Current layer directory
◆ FILE – Path and filename of file being processed

➢ Policy variables control the build
◆ BUILD_ARCH – Host machine architecture
◆ TARGET_ARCH – Target architecture
◆ And many others...

89

Build Time Metadata
➢ PN – Pakage name (“myrecipe”)
➢ PV – Package version (1.0)
➢ PR – Package Release (r0)
➢ P = “${PN}-${PV}”
➢ PF = “${PN}-${PV}-${PR}”
➢ FILE_DIRNAME – Directory for FILE
➢ FILESPATH = "${FILE_DIRNAME}/${PF}:\
➢ ${FILE_DIRNAME}/${P}:\
➢ ${FILE_DIRNAME}/${PN}:\
➢ ${FILE_DIRNAME}/files:${FILE_DIRNAME}

90

Build Time Metadata
➢ TOPDIR – The build directory
➢ TMPDIR = “${TOPDIR}/tmp”
➢ WORKDIR = ${TMPDIR}/work/${PF}”
➢ S = “${WORKDIR}/${P}” (Source dir)
➢ B = “${S}” (Build dir)
➢ D = “${WORKDIR}/${image}” (Destination dir)
➢ DEPLOY_DIR = “${TMPDIR}/deploy”
➢ DEPLOY_DIR_IMAGE = “${DEPLOY_DIR}/images”

91

Dependency Metadata
➢ Build time package variables

◆ DEPENDS – Build time package dependencies
◆ PROVIDES = “${P} ${PF} ${PN}”

➢ Runtime package variables
◆ RDEPENDS – Runtime package dependencies
◆ RRECOMMENDS – Runtime recommended packages
◆ RSUGGESTS – Runtime suggested packages
◆ RPROVIDES – Runtime provides
◆ RCONFLICTS – Runtime package conflicts
◆ RREPLACES – Runtime package replaces

92

Common Metadata
➢ Variables you commonly set

◆ SUMMARY – Short description of package/recipe
◆ HOMEPAGE – Upstream web page
◆ LICENSE – Licenses of included source code
◆ LIC_FILES_CHKSUM – Checksums of license files

at time of packaging (checked for change by build)
◆ SRC_URI – URI of source code, patches and extra

files to be used to build packages. Uses different
fetchers based on the URI.

◆ FILES – Files to be included in binary packages
93

