Building Images with Yocto Project- Lab

Tim Orling - Yocto Project, Intel Open Source Technology Center
March 9, 2018

These lab instructions are written for the Building Images with Yocto Project tutorial of the Embed-
ded Apprentice Linux Engineer track. They are designed to work for the PocketBeagle hardware
platform.

Initial build environment configuration

NOTE: This lab and the yocto-intro lab were written independently at first, so this sec-
tion should be review from that session and you can skip ahead to the next section.

To get started with the Yocto Project, one of the easiest things to do is to clone the poky repository
which will enable us to build the poky reference distribution.

The metadata layersat https://github.com/e-ale/yocto-e-ale provide a layers to work
with poky to build a complete Linux distribution for the PocketBeagle platform. Let us go ahead
and clone those now:

cd ..
git clone https://github.com/yocto-e—-ale

However, for educational purposes, we are going to start straight from the official vanilla poky,
and build our configuration from scratch.

Getting poky

Start by cloning poky from the official Yocto Project Git repository:

$ git clone https://git.yoctoproject.org/git/poky
$ cd poky/

(Note: if download speed is too slow, you can use the poky.tar.xz tarball provided by the
instructor)

E-ALE - Building Images with Yocto Project - https://www.yoctoproject.org 1

https://github.com/e-ale/yocto-e-ale
https://www.yoctoproject.org

We'll base our work on "master”, which is the latest development branch. This branch will be
released soon as the 2.5 or sumo release of the Yocto Project. Once it is released, an official yocto-
2.5 tag will become available and a sumo branch will be created which will provide on-going
support for future dot releases (e.g. 2.5.1). As of this writing the project is in milestone three, or
M3 of the 2.5 release.

Setting up our local configuration

We can now setup a build environment and begin by building an image for gemuarm:
$. oe—-init-build-env ../build-gemuarm

By default, the above command will build images for the germux86 machine, so we will need to
alter the default configuration to enable the gemuarm machine, by uncommenting (removing the
leading # on the following line in conf/local.conf:

#MACHINE ?= "gemuarm"

To save build and download time, we will use shared state and downloads already prepared for
you by your instructor. Shared state, also known as sstate or sstate-cache, is a specially organized
directory or cache of all the tasks that have been run to build a particular package or image. For
teams, like ours, that are rebuilding the same set of packages, this is a way to dramatically speed
up build time. The downloads directory can also be shared to save fetch time, or download time
from the internet. Change the following lines in conf/local.conf:

#DL_DIR ?= "S$S{TOPDIR}/downloads"
#SSTATE _DIR ?= "S$S{TOPDIR}/sstate-cache"

to

DL_DIR ?= "${HOME}/DOWNLOADS"
SSTATE_DIR ?= "${HOME}/SSTATE"

We also might want to build debian packages, like the BeagleBoard.org stock images. To do so we
need to change the following line in conf/local.conf:

PACKAGE_CLASSES 7= "package_rpm"
to
PACKAGE_CLASSES ?= "package_deb"

Also, to help speed up the build and save disk space, we can prevent temporary work being saved
to disk by appending the following to conf/local.conf:

INHERIT += "rm_work"

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 2

https://www.yoctoproject.org

drApprentice Linux.

gineer

Building a minimal image

To build a minimal image, with a very basic text console environment, we run the following
command:

bitbake core-image-minimal

This will perform all the tasks necessary to fetch the source code, build the native host tools,
compile and package the individual pieces of the image, and generate the root file system and the
tinal image.

Running our image in emulation

We can test the result of our efforts by running the image in the gemu emulated environment,
without graphics and using non-privileged network devices:

rungemu nographic slirp

Because the default setting is EXTRA_IMAGE_FEATURES ?= "debug-tweaks", we can simply
login as the root user with no password. This is only for development purposes and you should
never ship a product with such an insecure setting.

Notice that the text before the login prompt represents the "branding" of the poky distribution:
Poky (Yocto Project Reference Distro) 2.4+snapshot gemuarm /dev/ttyAMAO

gemuarm login:

To change this default behavior, we will want to create our own custom Linux distribution, by
creating a distro layer. We also want to add specific support for the PocketBeagle, so we will need
to create a bsp layer. We will want to add some of our recipes, so we should create an application
layer where we can put our work.

Create application layer

NOTE: This lab was originally written with the intent to create the distro and bsp layers first,
but it makes more sense to follow up with your experience in the yocto-intro course. We
will instead jump straight to the creation of the application layer. We will be using the distro
and bsp layers, but we will go over those layers after this section (or leave those sections as
follow up to do on your own).

E-ALE - Building Images with Yocto Project - https://www.yoctoproject . .org 3

https://www.yoctoproject.org

Create application layer

NOTE: if time is short or you want to skip ahead, the content of this section can be cloned
by running:

$ cd ../yocto-e-ale

$ git checkout 03_create_apps_layer

If you are running the lab "out of order", meaning starting with the application layer first,
you should start with:

$ cd ../yocto-e-ale

S git checkout 02_create_bsp_layer

As this will prepare you to run the instructions in this section.

First, we will use the bitbake-1layers tool to create a simple, but valid, layer skeleton that we
can build upon:

$ bitbake-layers create-layer ../yocto-e-ale/meta-e—-ale-apps

Add hello-recipe to our image

In the earlier yocto-intro session, you created a "hello world" application. We will now add
that to our new meta-e—-ale—apps layer.

S mv S{HOME}/e—-ale/hello-recipe meta-e—-ale—apps/recipes—example

We want our image to always build with this recipe, so we are going to create an image append
recipe and add to it. Note that image recipes are different in that they do not have a version (PV).

$ mkdir -p recipes—-image/images
$ vim recipes—image/images/core—-image-minimal.bbappend

There are several ways we can add the "hello" recipe to the image, but the author’s favorite is
the CORE_IMAGE_EXTRA_INSTALL variable. Use the following as the contents for the bbappend
file:

CORE_IMAGE_EXTRA_INSTALL += "hello"

We can now re-build core-image-minimal and our "hello" program will be included:

$ bitbake core-image-minimal
$ rungemu nographic slirp

root@gemuarm:~# hello

E-ALE - Building Images with Yocto Project - https://www.yoctoproject . .org 4

https://www.yoctoproject.org

drApprentice Linux.

gineer

Using devtool in our workflow

One of the most important changes the Yocto Project has brought since the the Open Embedded
Classic days is improved developer workflow tools. The poster-child for developer workflow
tools is devtool.

Just to show the process, we are going to add another "hello" program, this time from GNU '. To
keep this recipe distinct from our previous "hello" recipe, we will name this package "gnu-hello".
Since both install to /usr/bin/hello they will not coexist, so this is mostly just an excercise to
show you how to use devtool add with a known, simple package.

$ devtool add gnu-hello https://ftp.gnu.org/gnu/hello/\
hello-2.10.tar.gz

What did devtool create? All the work is in a temporary "sandbox" layer in your build directory.
This layer is called "workspace" by default.

workspace
— appends
l——qnu—hello_Z.1O.bbappend

— conf

i——layer.conf
— README

— recipes
l——gnu—hello
i——gnu—hello_Z.lO.bb

— Sources

L—gnu—hello
...

We can build our "sandboxed" recipe with the following command:
$ devtool build gnu-hello
Note: there is an issue with this source that causes it to fail to build the first time. This is a

known issue, but we have not fixed it yet. Simply run the above command again and it will
build successfully the second time.

We can add this recipe to our image if we like, but note that the binary will probably overwrite

1ht’fps: //www.gnu.org/software/hello/

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 5

https://www.yoctoproject.org

the hello-recipe we added earlier:

$ sed -1 —-e "s:"hello":"gnu-hello hello":g’ recipes—-image/images/\
core—image-minimal.bbappend

Now, if we are satisfied with our recipe, we can add it to our layer with the devtool finish
command. This command takes a recipe name and a destination (path to layer) as arguments. It
will complain that our source is not clean, so we will also use the - £ or "force" option:

$ devtool finish -f gnu-hello ../yocto-e-ale/meta-e-ale-apps/recipes—example/

A NOTE statement will let you know that the gnu-hello source directory has not been deleted
automatically, but that you can delete it now. This is because devt ool never wants to assume it
knows what is safe to erase or not. Note, however, that if you were to try to work with the same
recipe again with devtool, that it will refuse to do anything if the source directory of the same

name already exists. It is good practice to go ahead and remove the source directory after you are
finished:

$ rm -rf workspace/sources/gnu-hello

Upgrading recipes with devtool

Another common task in embedded development is upgrading an existing application to the
latest upstream version. We are going to use the nano text editor as an example.

We are going to cheat and grab the existing 2.7.4 recipe from the meta-openembedded/meta-
oe layer. We will use devtool to upgrade the nano editor to the latest version °.

$ mkdir recipes-—-support/nano

$ pushd recipes-support/nano

$ wget http://git.openembedded.org/meta-openembedded/plain/ \
meta-oe/recipes—support/nano/nano_2.7.4.bb

$ wget http://git.openembedded.org/meta-openembedded/plain/ \
meta-oe/recipes—-support/nano/nano.inc

$ popd

Let’s go ahead and build this recipe:
$ bitbake nano
We can add it to our image (this syntax is assuming you did not add "gnu-hello" to your image):

$ sed -1 -e ’'s:"hello":"hello nano":g’ recipes—-image/images/ \
core—-image-minimal .bbappend

We can rebuild our image and then run the "nano" program.

$ bitbake core-image-minimal
$ rungemu nographic slirp

thtps: / /www.nano-editor.org

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 6

https://www.yoctoproject.org

drApprentice Linux.

gineer

root@gemuarm: ~# nano
Now upgrade the version to the latest release (2.9.4 as of this writing):
$ devtool upgrade nano

Notice that we did not provide a version to which to upgrade. Because devtool knows about
package data (both parsed when bitbake first starts and built package data, which helps it to
better determine dependencies).

Behind the scenes, devtool is using a default value for UPSTREAM_CHECK_REGEX, a pattern to
use to determine the latest version from the upstream source (the SRC_URI). The combination of
this knowledge and the current version (PV) is all that is needed to know whether or not we need
to upgrade at all and what version to which to upgrade. Note that some packages need help with
the UPSTREAM_CHECK_REGEX, so the default values won’t always work.

What did devtool create?

workspace
— appends
l——nano_2.9.4.bbappend

— conf

i——layer.conf
— README

— recipes

i— nano

nano_2.9.4.bb

nano.1inc

— sSources

i— nano

L...

Finally, let us finish with our work on nano and clean up (again forcing the finish even though
our source tree is "not clean"):

$ devtool finish —-f nano ../yocto-e—-ale/meta-e—-ale—-apps/recipes—-support/
$ rm -rf workspace/sources/nano

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 7

https://www.yoctoproject.org

drApprentice Linux.

gineer

Create a distro layer

NOTE: if time is short or you want to skip ahead, the content of this section can be cloned
by running:

$ cd ../yocto-e-ale

$ git checkout 01_create_distro_layer

Bitbake comes with a tool to create the directory structure of a generic metadata layer. We will
use this tool now to create our distro layer skeleton.
bitbake-layers create-layer ../yocto-e-ale/meta-e-ale-distro

Let’s look at what was created:

meta-e—ale—-distro
— conf

L layer.conf

— COPYING.MIT

— README

+— recipes—example
i— example
l— example.bb

This is a generic metadata layer, more like an application or functional layer, and does not have
the pieces that make it a distro layer. We will now delete what we do not need and add what is
missing.

S cd meta-e-ale

S rm -rf recipes-example

$ mkdir -p conf/distro/include
$ vim conf/distro/e-ale.conf

Add the following content:

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 8

https://www.yoctoproject.org

drApprentice Linux.

gineer

DISTRO = "e-ale"

DISTRO_NAME = "e—-ale Linux"
DISTRO_VERSION = "1.0+snapshot-${DATE}"
E_ALE_DEFAULT_DISTRO_FEATURES = "systemd"

LAYER_CONF_VERSION 2= "1"

Add ssh server so we can connect to system running this image remotely,
add development tools (gcc, make, etc), and -dev packages for installed
E_ALE_DEFAULT_DISTRO_FEATURES += "ssh-server-openssh tools—-sdk dev-pkgs"

DISTRO_FEATURES ?= "S${DISTRO_FEATURES_DEFAULT} ${DISTRO_FEATURES_LIBC} S${E_
VIRTUAL-RUNTIME_init_manager = "systemd"
INHERIT += "uninative"

UNINATIVE_URL = "http://downloads.yoctoproject.org/releases/uninative/1.7/"
UNINATIVE_CHECKSUM[i686] ?= "deblbc9162b07694d3462352ab25f636a6b50235438clb
UNINATIVE_CHECKSUM[x86_64] ?= "ed033c868b87852b07957a4400£f3b744c00aef5d6470

In order to add our branding before the login prompt, we need to enable our local changes to
override the default in the base-files recipe:

$ mkdir -p recipes-core/base-files

$ pushd recipes-core/base-files

$ echo "# look for files in this layer first’ > base-files_%.bbappend

$ echo 'FILESEXTRAPATHS_prepend := "S${THISDIR}/S${PN}:"’ >> base-files_%.bbapp

This tells Bitbake to look at our meta-e-ale-distro layer before any other layer of lower pri-
ority (allows us to override default behavior). The := operator says to immediately expand the
variables $ {THISDIR} and ${PN}. The : at the end is important and easy to miss, with that your
paths will be mangled in a non-functional way.

Next, we want to add our branding to the file which will be installed in our root file system at
/etc/issue:

$ mkdir recipes-core/base-files/base-files
$ vim recipes-core/base-files/base-files/issue

We want our result to look like the following:

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 9

https://www.yoctoproject.org

drApprentice Linux.

gineer

/N N A R B VAR
S/ L G I D
\ I\ I

NS
L] 1> <
N,/ /NN

= = = —

/

S P — I —

Embedded Apprentice Linux Engineer http://e—-ale.org

Unfortunately, we need to escape all the backslash characters, so the actual content is less readable
in the file itself:

|

— |

/NN /1 NN
|

NN AN AN/
Ll 1 <
W\ A\, N /0 1IN,/ /NN

Embedded Apprentice Linux Engineer http://e-ale.org

We also want branding for network access (like ssh):

$ pushd recipes-core/base-files/base-files
S cp issue issue.net
$ popd

Configuration Templates

We would like to make it easy to start working with our distro layer, so we will provide templates
for local.conf and bblayers.conf. These are created in the meta—-e—ale-disro/conf
directory as local.conf.sample and bblayers.conf.sample.

For local.conf.sample, we can simply copy our local.conf from our prior session and just
change the distro from "poky" to "e-ale":

$ cp ../build-gemuarm/conf/local.conf \
meta-e-ale-distro/conf/local.conf.sample

$ sed -1 —-e ’s:DISTRO = "poky":DISTRO = "e-ale":g’ \
meta-e—-ale-distro/conf/local.conf.sample

For bblayers.conf.sample, the template has content that is automatically replaced, so the
syntax is a bit trickier and we use the following content:

E-ALE - Building Images with Yocto Project - https://www.yoctoproject . .org 10

https://www.yoctoproject.org

drApprentice Linux.

gineer

LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly

LCONF_VERSION = "1"
BBPATH = "${TOPDIR}"
BBFILES ?= ""
BBLAYERS ?= " \

##OEROOT##/meta \
##OEROOT##/../yocto—e—ale/meta—e—ale—-distro \

"

The special tokens ##0EROOT## are substituted (with the full path to openembedded-core) auto-
matically when the template is used to create the bblayers. conf file. For now, we only include
the distro layer we are currently working on. We will add more layers in the next sections. Be
careful with the paths that you use, as you need to remember that this file will be sourced in the
context of the environment variable ${OEROOT }, which in our usage will be set to be the "poky"
directory by our init-build-env script. We will populate that script now.

Rather than using the default openembedded-core init script contained in poky, we will use our own
that will setup the build environment for our distro (and in the next section, board support for
the PocketBeagle).

Create the build environment initialization script init-build-envinthe yocto-e-ale direc-
tory with the following content:

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 11

https://www.yoctoproject.org

! /bin/sh

#
i
#
#
#
#
i
#
#
#
#
#
#
#
#
#
#

OE Build Environment Setup Script
Copyright (C) 2006-2011 Linux Foundation

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Normally this is called as ’. ./oe-init-build-env <builddir>’

H o

This works in most shells (not dash), but not all of them \
pass the arguments
when being sourced. To workaround the shell limitation \
use "set <builddir>"
prior to sourcing this script.
#
LAYER_CONF_VERSION is increased each time \
build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "7"
THIS_SCRIPT_DIR=$ (dirname "STHIS_SCRIPT")
THIS_SCRIPT_DIR=$ (readlink —f "STHIS_SCRIPT_DIR")

if [-d "STHIS SCRIPT DIR/meta-e—-ale-distro/conf"]; then
TEMPLATECONF="STHIS SCRIPT DIR/meta-e-ale-distro/conf"

elif [—-f "STHIS_SCRIPT_DIR/.templateconf"]; then
source STHIS_SCRIPT_DIR/.templateconf

elif [—-d "STHIS_SCRIPT_DIR/.template"]; then
TEMPLATECONF="STHIS_SCRIPT_DIR/.template"

fi

fi

E-ALE - Building Images with Yocto Project - https://www.yoctoproject . .org 12

https://www.yoctoproject.org

continued:

if [-z "SOEROOT"]; then
OEROOT=$ (dirname "STHIS_SCRIPT")/../poky
OEROOT=S (readlink —-f "SOEROOT")

fi

export OEROOT

if [-z "SBITBAKEDIR"]; then
BITBAKEDIR=S (dirname "$THIS_SCRIPT")/../poky/bitbake
BITBAKEDIR=S (readlink —-f "SBITBAKEDIR")

fi

export BITBAKEDIR

unset THIS_SCRIPT_DIR
unset THIS_ SCRIPT

SOEROOT/scripts/oe-buildenv-internal &&
TEMPLATECONF="STEMPLATECONF" \
SOEROOT/scripts/oe-setup-builddir || {
unset OEROOT
return 1

}
unset OEROOT

[-z "SBUILDDIR"] || cd "SBUILDDIR"

Shutdown any bitbake server if the BBSERVER variable is not set
if [-z "S$SBBSERVER"] && [—-f bitbake.lock]; then
grep ":" bitbake.lock > /dev/null && BBSERVER=S (cat \
bitbake.lock) bitbake —--status-only
if [$? = 0]; then
echo "Shutting down bitbake memory resident server \
with bitbake -m"
BBSERVER=S (cat bitbake.lock) bitbake -m
fi
fi

We can now create a new build environment with our new distro layer:

$. ./init-build-env ../build-e-ale-1
S bitbake core-image-minimal
$ rungemu nographic slirp

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 13

https://www.yoctoproject.org

The text at the login will now be what we want for our branding;:

|
S R L
/N /Y11 N\
/S B G I D
A NI\ I

N Y
) 1> <

|
|
|
| |

N T I NPV A

e
0
/I

= = = —

Embedded Apprentice Linux Engineer http://e-ale.org
e-ale Linux 1.0+snapshot gemuarm ttyAMAO

gemuarm login:
Just to quickly review, our directory structure should now look like the following;:

yocto—e—ale
tinit—build—env

meta-e-ale-distro
— conf

t— bblayers.conf.sample

— distro

Le—ale.conf

+— layer.conf

— local.conf.sample

— COPYING.MIT

— README

— recipes-core
Lbase—files
Lbase—files

tissue
issue.net

— base-files_5%.bbappend

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 14

https://www.yoctoproject.org

drApprentice Linux.

gineer

Create a bsp layer

NOTE: if time is short or you want to skip ahead, the content of this section can be cloned
by running:

$ cd ../yocto-e-ale

$ git checkout 02_create_bsp_layer

Similar to what we did in the prior section, we will use the bitbake-layers tool to create our
bsp layer skeleton.

bitbake-layers create-layer ../yocto-e-ale/meta-e-ale-bsp

This is a generic metadata layer, more like an application or functional layer, and does not have
the pieces that make it a bsp layer. We will now delete what we do not need and add what is
missing.

$ pushd meta-e-ale-bsp

$ rm —-rf recipes-example

$ mkdir -p conf/machine/include

$ vim conf/machine/pocketbeagle.conf

We can borrow some hints from Koen Kooi’s fork of the met a—beagleboard layer °. He recently
updated his fork for a PocketBeagle demo for FOSDEM 2018 *.

Use the following content for pocketbeagle.conf:

include conf/machine/include/ti33x.1inc

PREFERRED_PROVIDER_virtual/kernel = "linux-pocketbeagle"
SPL_BINARY = "MLO"
PREFERRED_PROVIDER_virtual/bootloader = "u-boot"
PREFERRED_PROVIDER_u-boot = "u-boot"

For simplicity, we are going to copy some dependent files from the meta-t1i layer, although we
could also clone and depend on that vendor layer. We plan to go into more detail of utilizing the
meta-ti layer in a future advanced training session.

$ pushd conf/machine/include

$ wget http://git.yoctoproject.org/cgit/cgit.cgi/meta-ti/plain/ \
conf/machine/include/ti33x.1inc

$ wget http://git.yoctoproject.org/cgit/cgit.cgi/meta-ti/plain/ \
conf/machine/include/ti-soc.inc

$ popd

Shttps:/ / github.com/koenkooi/meta-beagleboard /blob/master /common-bsp / conf/machine/pocketbeagle.conf
*https:/ /plus.google.com/+KoenKooi/posts/dVnZfMgZ9Ma

E-ALE - Building Images with Yocto Project - https://www.yoctoproject . .org 15

https://www.yoctoproject.org

In our pocketbeagle.conf, we set the PREFERRED_PROVIDER for the virtual/kernel to
be "linux-pocketbeagle". That configuration does not exist, so we will create it. First we need to
create the directory structure for this recipe.

$ mkdir -p recipes-kernel/linux/linux-pocketbeagle
$ vim recipes—-kernel/linux/linux—-pocketbeagle_4.14.bb

We will base our recipe onmeta-skeleton/recipes-kernel/linux/linux-yocto-custom.
bb. Use the following content:

S S S S o e S S b S S o S S o S S o o S o o SE e o S e o o

linux—-pocketbeagle.bb:

Based on meta-skeleteon/recipes-kernel/linux/linux-yocto—-custom.bb

An example kernel recipe that uses the linux-yocto and oe-core
kernel classes to apply a subset of yocto kernel management to git
managed kernel repositories.

To use linux-yocto-custom in your layer, copy this recipe (optionally
rename it as well) and modify it appropriately for your machine. i.e.:

COMPATIBLE_MACHINE_yourmachine = "yourmachine"

You must also provide a Linux kernel configuration. The most direct
method is to copy your .config to files/defconfig in your layer,

in the same directory as the copy (and rename) of this recipe and
add file://defconfig to your SRC_URI.

To use the yocto kernel tooling to generate a BSP configuration
using modular configuration fragments, see the yocto-bsp and
yocto-kernel tools documentation.

Warning:

Building this example without providing a defconfig or BSP
configuration will result in build or boot errors. This is not a
bug.

continued:

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 16

https://www.yoctoproject.org

N

Notes:

patches: patches can be merged into to the source git tree itself,
added via the SRC_URI, or controlled via a BSP
configuration.

defconfig: When a defconfig is provided, the linux-yocto configuration
uses the filename as a trigger to use a 'allnoconfig’ baseli
before merging the defconfig into the build.

If the defconfig file was created with make_savedefconfig,
not all options are specified, and should be restored with t
defaults, not set to 'n’. To properly expand a defconfig 1lik
this, specify: KCONFIG_MODE="--alldefconfig" in the kernel
recipe.

example configuration addition:

SRC_URI += "file://smp.cfg"
example patch addition (for kernel v4.x only):

SRC_URI += "file://0001-linux-version-tweak.patch"
example feature addition (for kernel v4.x only):

SRC_URI += "file://feature.scc"

S S S S S b S S o e S o e S S S S o o S S o o

inherit kernel
require recipes-kernel/linux/linux—-yocto.inc

Override SRC_URI in a copy of this recipe to point at a different source

tree if you do not want to build from Linus’ tree.

SRC_URI = "\
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git;p
file://defconfig \
file://0001-Stripped-back-pocketbeagle-devicetree.patch \

LINUX_VERSION ?= "4.14.18"
LINUX_VERSION_EXTENSION_append = "-pocketbeagle"

Modify SRCREV to a different commit hash in a copy of this recipe to
build a different release of the Linux kernel.

tag: v4.14.18 81d0cc85caabe062991ead5ddada814835d47fb0
SRCREV_stable="81d0cc85caabe062991ead45ddada814835d47fb0"

PV = "S{LINUX_VERSION}+git${SRCPV}"

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 17

https://www.yoctoproject.org

continued:

Override COMPATIBLE_MACHINE to include your machine in \
a copy of this recipe file.
COMPATIBLE_MACHINE = "pocketbeagle"

We will re-use the defconfig and patch from the buildroot-e-ale Git repository:

$ pushd recipes-kernel/linux/linux-pocketbeagle

$ wget https://raw.githubusercontent.com/e-ale/buildroot—-e—-ale/ \
master/board/pocketbeagle/linux.config -0 defconfig

$ wget https://raw.githubusercontent.com/e—-ale/buildroot-e—-ale/ \
master/board/pocketbeagle/patches/linux/ \
0001-Stripped-back-pocketbeagle-devicetree.patch

$ popd

Now, we need to change our distro layer configuration from the prior section to reflect hardware
that is supported, namely the PocketBeagle. Change the conf/local.conf.sample "Machine
Selection" section to be the following;:

Machine Selection

You need to select a specific machine to target the build with.
This sets the default machine to be pocketbeagle if no other
machine is selected:

MACHINE ??= "pocketbeagle"

R

This is a major change to the layer, so we should bump the layer configuration version.

We also know that we need changes to the U-Boot bootloader. Let us create the directories to hold
the u-boot recipes and patches.

$ mkdir -p recipes-bsp/u-boot/u-boot
Once again we will re-use the files from the builroot-e-ale repo:

$ pushd recipes-bsp/u-boot/u-boot

$ wget https://raw.githubusercontent.com/e—-ale/buildroot—-e—-ale/ \
master/board/pocketbeagle/patches/u-boot/ \
0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch

$ wget https://raw.githubusercontent.com/e—ale/buildroot—-e-ale/ \
master/board/pocketbeagle/patches/u-boot/ \
0002-U-Boot—-BeagleBone-Cape—-Manager.patch

$ wget https://raw.githubusercontent.com/e—-ale/buildroot—-e—-ale/ \
master/board/pocketbeagle/patches/u-boot/ \
0003-pocketbeagle-tweaks.patch

$ wget https://raw.githubusercontent.com/e-ale/buildroot—-e—-ale/ \

E-ALE - Building Images with Yocto Project - https://www.yoctoproject . .org 18

https://www.yoctoproject.org

master/board/pocketbeagle/uEnv.txt
$ popd

Now we will append the stock u-boot recipe:
$ vim recipes-bsp/u-boot/u-boot_2018.01.bb
Use the following content:

look for files in this layer first
FILESEXTRAPATHS_prepend := "${THISDIR}/S${PN}:"

SRC_URI += "\
file://0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch \
file://0002-U-Boot-BeagleBone—-Cape-Manager.patch \
file://0003-pocketbeagle-tweaks.patch \
file://uEnv.txt \

Summary

We have learned a lot more details about the different kinds of layers and how to create our own
custom layers. Many developers new to the Yocto Project and Open Embedded fail to create their
own layers and instead just fork poky and do all their work "in-tree". This is a major mistake
and creates future technical debt to upgrade to a newer Yocto Project release. It also clutters your
git repository and completely ignores the intent of layers: flexibility and modularity. Using the
skills you learned in this lab to build your own layers will really pay off in your future embedded
Linux development efforts.

E-ALE - Building Images with Yocto Project - https://www.yoctoproject .org 19

https://www.yoctoproject.org

