
e-ale-rt-apps

Building Real-Time
Applications for Linux

Version 20181023

c© CC-BY SA4

ii

c© CC-BY SA4

The E-ALE (Embedded Apprentice Linux Engineer) is a series of seminars held at existing conferences covering topics which
are fundamental to a Linux professional in the field of Embedded Linux.

This seminar will spend equal time on lecture and hands on labs at the end of each seminar which allow you to practice the
material you’ve learned.

This material makes the assumption that you have minimal experience with using Linux in general, and a basic
understanding of general industry terms. The assumption is also made that you have access to your own
computers upon which to practice this material.

More information can be found at https://e-ale.org/

This material is licensed under CC-BY SA4

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

Contents

1 Preliminaries 1

1.1 Speaker Information . 2

1.2 Real-Time Defined . 3

1.3 Scheduling with Real-Time . 6

1.4 Limiting/Isolating CPUs . 7

1.5 Understanding Memory Management . 8

1.6 Evaluating Real-Time Systems . 9

1.7 Labs . 10

2 Application Development 11

2.1 Real-Time API . 12

2.2 Controlling Memory . 13

2.3 Using Clocks . 14

2.4 Locking . 15

2.5 Signalling . 16

iii

iv CONTENTS

2.6 Labs . 18

3 Debugging and Verification 23

3.1 Performance Counters and Events . 24

3.2 Tracing . 25

3.3 Labs . 28

4 Summary 29

4.1 Checklist . 30

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

Chapter 1

Preliminaries

1.1 Speaker Information . 2

1.2 Real-Time Defined . 3

1.3 Scheduling with Real-Time . 6

1.4 Limiting/Isolating CPUs . 7

1.5 Understanding Memory Management . 8

1.6 Evaluating Real-Time Systems . 9

1.7 Labs . 10

1

2 CHAPTER 1. PRELIMINARIES

1.1 Speaker Information

Introduction

• John Ogness <john.ogness@linutronix.de>

• Converted to the ”UNIX way” in 1998.

• Using Linux professionally since 2001.

• Working on board support packages (BSPs), real-time systems, and as
a trainer at Linutronix GmbH (Germany) since 2008.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

1.2. REAL-TIME DEFINED 3

1.2 Real-Time Defined

What is Real-Time?

• Correctness is not just about writing bug-free, efficient code.

• It also means executing at the correct time.

• And failing to meet timing restrictions leads to an error.

• This requires:

– deterministic runtime/scheduling behavior
– interruptibility
– priority inversion avoidance

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

4 CHAPTER 1. PRELIMINARIES

Priority Inversion

Figure 1.1: An example of priority inversion.

In this example, task3 is holding a lock that task1 wants. However, task3
never gets a chance to release that lock because it was interrupted by
task2.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

1.2. REAL-TIME DEFINED 5

Priority Inheritance

Figure 1.2: An example showing priority inheritance.

Linux supports priority inheritance to temporarily boost the priority of
task3 once task1 tries to acquire the lock. This results in task1 acquiring
the lock as soon as possible.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

6 CHAPTER 1. PRELIMINARIES

1.3 Scheduling with Real-Time

Scheduling Policies

Real-Time Policies:

• SCHED FIFO: static priority (1-99), can only lose the CPU to higher
priority tasks or hardware interrupts

• SCHED RR: like SCHED FIFO but with round robin scheduling for
tasks of the same priority

• SCHED DEADLINE: dynamic priority based on deadlines

Non-Real-Time Policies:

• SCHED OTHER: dynamic time slices based on nice value

• SCHED BATCH: a disfavored SCHED OTHER

• SCHED IDLE: run only when otherwise idle

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

1.4. LIMITING/ISOLATING CPUS 7

1.4 Limiting/Isolating CPUs

CPU Affinity

• Each task has its own CPU affinity mask, specifying which CPUs it may
be scheduled on.

• Boot parameters are available to set default masks for all tasks (includ-
ing the kernel’s own tasks).

• A CPU affinity mask for routing individual hardware interrupt handling
is also available.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

8 CHAPTER 1. PRELIMINARIES

1.5 Understanding Memory Management

Page Faulting

By default, physical memory pages are mapped to the virtual address
space on demand. This allows features such as over-commitment and
it affects all virtual memory of a process:

• text segment

• initialized data segment

• uninitialized data segment

• stack(s)

• heap

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

1.6. EVALUATING REAL-TIME SYSTEMS 9

1.6 Evaluating Real-Time Systems

How to Evaluate a Real-Time System?

• Use the cyclictest tool. (Part of the rt-tests package.)

– measures/tracks latencies from hardware interrupt to userspace
– run at the priority level to evaluate

• Generate worst case system loads.

– scheduling load: the hackbench tool
– interrupt load: flood pinging with ”ping -f”
– serial/network load: ”top -d 0” via console and network shells
– memory loads: OOM killer invocations
– various load scenarios: the stress-ng tool

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

10 CHAPTER 1. PRELIMINARIES

1.7 Labs

Exercise 1.1: Measure Real-Time Latencies
Use cyclictest and various load generation tools and methods to try to find a worst-case latency for your system (your laptop
and/or your embedded board).

A good command line for cyclictest:

cyclictest -S -m -p 98 --secaligned

Some ideas for load generation:

while true; do hackbench; done

ping -f 192.168.7.2

top -d 0

while true; do echo -n; done

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

Chapter 2

Application Development

2.1 Real-Time API . 12

2.2 Controlling Memory . 13

2.3 Using Clocks . 14

2.4 Locking . 15

2.5 Signalling . 16

2.6 Labs . 18

11

12 CHAPTER 2. APPLICATION DEVELOPMENT

2.1 Real-Time API

POSIX

• Linux real-time features are implemented using the POSIX standard
API. Most developers are already comfortable with this interface.

• No exotic libraries.

• No exotic objects.

• No exotic functions.

• No exotic semantics.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

2.2. CONTROLLING MEMORY 13

2.2 Controlling Memory

Avoid Page Faults

• Tune glibc’s malloc to avoid memory mapping as a form of memory
allocation. mmap’d memory cannot be reused after being freed.

• Lock down allocated pages so that they cannot be returned to the
kernel. Hold on to what you’ve been given.

• Prefault the heap and the stack(s).

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

14 CHAPTER 2. APPLICATION DEVELOPMENT

2.3 Using Clocks

The Monotonic Clock

• Use the POSIX functions that allow clock specification. These begin
with clock .

• Choose CLOCK MONOTONIC. This is a clock that cannot be set and
represents monotonic time since some unspecified starting point.

• Do not use CLOCK REALTIME. This is a clock that represents the
”real” time. For example, Tuesday 23 October 2018 17:00:00. This
clock can be set by NTP, the user, etc.

• Use absolute time values. Calculating relative times is error prone
because the calculation itself takes time.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

2.4. LOCKING 15

2.4 Locking

Synchronization

• Use the pthread mutex as the lock. These objects have owners (un-
like semaphores) so the kernel can more intelligently choose which pro-
cesses to schedule.

• Activate priority inheritance. Unfortunately this is not the default.

• Activate shared and robustness features if the lock is accessed by mul-
tiple processes in shared memory.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

16 CHAPTER 2. APPLICATION DEVELOPMENT

2.5 Signalling

Conditional Variables

• Use pthread cond objects for notifying tasks. These can be associ-
ated with pthread mutex objects to provide synchronized notification.

• Do not use signals (such as POSIX timers or the kill() function). They in-
volve unclear and limited contexts, do not provide any synchronization,
and are difficult to program correctly.

• Activate the shared feature if the conditional variable is accessed by
multiple processes in shared memory.

• The sender should notify the receiver before releasing the lock associ-
ated with the conditional variable.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

2.5. SIGNALLING 17

Signalling (code snippet)

#include <pthread.h>

pthread_mutex_t lock;

pthread_cond_t cond;

Code of receiver:

pthread_mutex_lock(&lock);

pthread_cond_wait(&cond, &lock);

/* we have been signaled */

pthread_mutex_unlock(&lock);

Code of sender:

pthread_mutex_lock(&lock);

/* do the work */

pthread_cond_broadcast(&cond);

pthread_mutex_unlock(&lock);

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

18 CHAPTER 2. APPLICATION DEVELOPMENT

2.6 Labs

Exercise 2.1: Examine Page Fault Effects
The pgflt program demonstrates the effects of page faulting by performing several actions and tracking the time duration and
number of page faults generated by those actions.

The pgflt program has implemented the various memory controlling techniques presented here. Each of these techniques
can be individually enabled and disabled to explore their effects.

The test actions performed by pgflt are:

• allocate, set, and free 10MiB of memory

• call a function recursively to occupy a 7MiB stack

Each of the test actions are performed 4 times.

usage: ./pgflt [opts-bitmask]

opts-bits:

0x01 = mallopt

0x02 = mlockall

0x04 = prefault-stack

0x08 = prefault-heap

0x10 = run tests

0x10 = no rt tweaks + tests

0x1f = full rt tweaks + tests

Examples:

./pgflt 0x10

./pgflt 0x1f

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

2.6. LABS 19

Exercise 2.2: Run/Investigate LED Master Program
The ledmaster program runs a real-time cyclic task that is updating a (different) LED every 50ms. Run it and observe its
performance. Things to consider:

• the real-time priority (or non-real-time nice value) of the task

• the load on the system

• the performance of cyclictest at different real-time priorities

Priority tools: chrt, nice, renice

Starting ledmaster with real-time priority:

chrt -f 80 ./ledmaster

Modifying the real-time priority of a running ledmaster:

chrt -f -p 80 $(pidof ledmaster)

Starting ledmaster with a non-real-time nice value:

nice -n 19 ./ledmaster

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

20 CHAPTER 2. APPLICATION DEVELOPMENT

Exercise 2.3: Run/Investigate LED Mirror Program
The ledmaster does not just set an LED with each cycle, but also stores the LED number and value of the most recently set
LED into shared memory. In shared memory there is also a mutex and conditional variable, that is used to synchronize the
data and signal any ”listeners”. After setting a value, ledmaster signals.

The ledmirror program also sets an LED. However, rather than running cyclically, all it has available is the shared memory
provided by the ledmaster.

Run it and observe its performance. Things to consider:

• the real-time priority (or non-real-time nice value) of the task

• the load on the system

• its effect on the ledmaster task

Priority tools: chrt, nice, renice

Starting ledmirror with real-time priority:

chrt -f 70 ./ledmirror

Modifying the real-time priority of a running ledmirror:

chrt -f -p 70 $(pidof ledmirror)

Starting ledmirror with a non-real-time nice value:

nice -n 19 ./ledmirror

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

2.6. LABS 21

Exercise 2.4: Run the LED Priority Script
The ledprio script makes use of the thumbwheel driver implemented in the ”IIO and Input Drivers” talk. It monitors for input
events from the thumbwheel. When these events occur, the thumbwheel value is read and the priority of the ledmirror program
is adjusted. The range is from SCHED OTHER/nice=19 until SCHED OTHER/nice=-20 and then finally SCHED FIFO/rtprio=1.

Run all the components and play with the thumbwheel:

chrt -f 80 ./ledmaster &

./ledmirror &

./ledprio

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

22 CHAPTER 2. APPLICATION DEVELOPMENT

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

Chapter 3

Debugging and Verification

3.1 Performance Counters and Events . 24

3.2 Tracing . 25

3.3 Labs . 28

23

24 CHAPTER 3. DEBUGGING AND VERIFICATION

3.1 Performance Counters and Events

perf

• perf is a tool that can count various types of hardware and software
events.

• Some examples: CPU cycles, page faults, cache misses, context
switches, scheduling events, ...

• It can help to identify performance issues with real-time tasks by show-
ing if certain types of latency causing events are occurring.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

3.2. TRACING 25

3.2 Tracing

The Linux Tracing Infrastructure

• Log not only what happened but also when it happened.

• Provides a rich set of software events (points of code) in the kernel.

• Custom kernel events can be added to a live system.

• Custom userspace events can be added to a live system. (Userspace
tasks must be started after the events are added, but the programs do
not need to be modified.)

• Tools are available to simplify usage, such as trace-cmd and perf.

• Graphical tools are available to view and analyze trace data, such as
kernelshark and Trace Compass.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

26 CHAPTER 3. DEBUGGING AND VERIFICATION

kernelshark Output

Figure 3.1: kernelshark: Scheduling overview.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

3.2. TRACING 27

kernelshark Output

Figure 3.2: kernelshark: Scheduling details.

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

28 CHAPTER 3. DEBUGGING AND VERIFICATION

3.3 Labs

Exercise 3.1: Measure Wake Latencies
Install rt-tests, trace-cmd, and kernelshark packages on your laptop.

Record a trace with cyclictest running for 2 seconds.

sudo trace-cmd record -e irq_vectors:local_timer_entry \

-e irq_vectors:local_timer_exit \

-e sched:sched_wakeup \

-e sched:sched_switch \

-e syscalls:sys_exit_clock_nanosleep \

cyclictest -S -m -p 98 --secaligned -D 2 -q

View the results and measure the components of the wakeup latency.

kernelshark

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

Chapter 4

Summary

4.1 Checklist . 30

29

30 CHAPTER 4. SUMMARY

4.1 Checklist

Real-Time Checklist

Real-Time Priority

• SCHED FIFO, SCHED RR

CPU Affinity

• applications

• interrupt handlers

• interrupt routing

Memory Management

• avoid mmap() with malloc()

• lock memory

• prefault memory

Time and Sleeping

• use monotonic clock

• use absolute time

Avoid Signals

• such as POSIX timers

• such as kill()

Avoid Priority Inversion

• use pthread mutex
(and set attributes!)

• use pthread cond
(and set attributes!)

Be aware of NMIs

Verify Results

• trace scheduling

• trace page faults

• monitor traces

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

4.1. CHECKLIST 31

git clone https://github.com/e-ale/rt-apps c© CC-BY SA4

	Preliminaries
	Speaker Information
	Real-Time Defined
	Scheduling with Real-Time
	Limiting/Isolating CPUs
	Understanding Memory Management
	Evaluating Real-Time Systems
	Labs

	Application Development
	Real-Time API
	Controlling Memory
	Using Clocks
	Locking
	Signalling
	Labs

	Debugging and Verification
	Performance Counters and Events
	Tracing
	Labs

	Summary
	Checklist

