PocketBeagle Walk Through
PocketBeagle walk-through

Friendly to novices and experts alike, the Beagle experience tracks mainline u-boot, Linux and Debian development, while augmenting it to enable development to start as quickly as possible. Attendees will get started interacting with the hardware via the command-line, shell scripts, Python and JavaScript. Attendees will be walked through the configuration details for the boot configuration, pin multiplexing, USB networking and other helper scripts they should get to know. Support and development processes within the BeagleBoard.org community will be covered. Exercises will pave the way for the other workshops to dive into their topic without needing to backtrack excessively on PocketBeagle-specific details.
Author and license

- Author
 - Jason Kridner
 - Co-founder BeagleBoard.org, Texas Instruments
 - Sitara apps
 - https://beagleboard.org/about

- License
 - Creative Commons Attribution – Share Alike 4.0
 - https://creativecommons.org/licenses/by-sa/4.0/
Outline

- BeagleBoard.org, PocketBeagle and BaconBits
- Developer experience
 - Command-line and shell script
 - JavaScript and Python
 - C/C++
 - C on PRUs
- Project examples
- Labs
BeagleBoard.org’s objectives

• Education
 – Design and use of open source SW/HW
 – Embedded computing

• Collaboration
 – Physical computing
 – Robotics
 – Industrial/machine controls
Inspiration from early PCs

http://www.sandywalsh.com/2012_07_01_archive.html
Inspiration from early PCs

- How do people learn about embedded computers with so much ground to cover?

http://www.sandywalsh.com/2012_07_01_archive.html
Inspiration from early PCs

• How do people learn about embedded computers with so much ground to cover?

• Linux keeps history
• Affordable -> hackable
• Open from boot
• High-level languages
• Motivate with hardware

http://www.sandywalsh.com/2012_07_01_archive.html
Vision

- Creating with electronics should be as easy as creating a web page
Vision

- Creating with electronics should be as easy as creating a web page
- Appliances are better than applications
Vision

● Creating with electronics should be as easy as creating a web page

● Appliances are better than applications

● Open source software and hardware enable
 – Collaboration on the problem
 – Ability to understand and improve the fundamentals
Reality

- Boot-to-browser feels too limiting → booting to Debian distro
- Collaborative programming still complex → collaborate at the kernel
- Many possible development environments
 - command-line/ssh, Cloud9 IDE, node-red, pureData, SuperCollider, LabView, Matlab, Eclipse, Visual Studio, Scratch, Blockly
- Domain specific approaches
 - Machinekit/LinuxCNC, PLC, many IoT toolkits
 - Many rapid sensor approaches: capes, mikroBus, Grove/Grove Zero, PMOD
 - Many rapid build approaches: LEGO, printing/milling, Makeblock, Vex, various other aluminum kits
Approach

• Don’t try to boil the ocean
 – We seek to engage the open source community

• Help where we can
 – Blue supports Grove cables
 – PocketBeagle supports mikroBus click pinout
 – Many “BeagleBoard Compatible” devices targeting specific application areas
Board history

Fanless open computer (BeagleBoard)

Mint tin sized with industrial peripherals (BeagleBone)

Application focused BeagleBones

Smalls mint tin sized with super-flexible design - PocketBeagle
PocketBeagle objectives

- Get simple
 - 4-layer PCB done in both Kicad and EAGLE
 - Every expansion header pin has a useful predefined mode
- Get flexible
 - USB to holes, no on-board pin consumption, no header soldered
 - Support for 2 mikroBus Click boards (over 300 already exist)
- Get small
 - Stick with mint-tin survival-kit theme, but go to “smalls” (35mm x 55mm)
- Get low cost
 - System-in-package approach has can lower build costs
 - Launched/sustainable at $25
PocketBeagle key features

- **Processing**
 - 1-GHz ARM Cortex-A8 processor
 - 2x200-MHz programmable real-time units (PRUs)
 - ARM Cortex-M3 microcontroller for power and security
 - SGX530 graphics processor (OpenGLES)

- **Memory**
 - 512-MB DDR3
 - 4-KB I2C EEPROM

- **Interfaces**
 - USB 2.0 OTG
 - microSD
 - 72 expansion header pins
 - 8 analog inputs (6@1.8V, 2@3.3V)
 - 44 digital I/Os (18 enabled)
 - 3 UARTs (2 enabled)
 - 2 I2C ports
 - 2 SPI ports
 - 2 quadrature encoders accessible
 - 2 CAN bus controllers accessible
 - USB, power/reset buttons, battery/DC
PocketBeagle top

Octavo Systems OSD3358-SM

- Power LED
- Clock
- USB 2.0 OTG
- Power
- User LEDs
- P2 Header
- Boot Config
- microSD Card Slot
- P1 Header
PocketBeagle bottom

P2 Header

P1 Header
PocketBeagle Expansion

PocketBeagle Expansion Headers (Rev A2a)

Pinout Details

<table>
<thead>
<tr>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS</td>
<td>PWM1</td>
</tr>
<tr>
<td>VIN</td>
<td>PWM2</td>
</tr>
<tr>
<td>USB1, V_EN</td>
<td>GND</td>
</tr>
<tr>
<td>GPIO</td>
<td>GND</td>
</tr>
<tr>
<td>USB1</td>
<td>VIN</td>
</tr>
<tr>
<td>MISO</td>
<td>rx PRU</td>
</tr>
<tr>
<td>CS</td>
<td>tx PRU</td>
</tr>
<tr>
<td>CLK</td>
<td>PRU1</td>
</tr>
<tr>
<td>AIN 3.3V</td>
<td>PRU1</td>
</tr>
<tr>
<td>9</td>
<td>PWR BTN</td>
</tr>
<tr>
<td>PRU1</td>
<td>SYS</td>
</tr>
<tr>
<td>GPIO</td>
<td>VOUT</td>
</tr>
<tr>
<td>110</td>
<td>GND</td>
</tr>
<tr>
<td>AIN 1.8V</td>
<td>GND</td>
</tr>
<tr>
<td>16(in)</td>
<td>STRB, QEP2</td>
</tr>
<tr>
<td>PRU0</td>
<td>15i</td>
</tr>
<tr>
<td>GPIO</td>
<td>14(out)</td>
</tr>
<tr>
<td>14</td>
<td>PAR0</td>
</tr>
<tr>
<td>GPIO</td>
<td>A</td>
</tr>
<tr>
<td>35</td>
<td>PWM0</td>
</tr>
<tr>
<td>PWM0</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>40</td>
<td>16(in)</td>
</tr>
<tr>
<td>PRU1</td>
<td>QEP2</td>
</tr>
<tr>
<td>33</td>
<td>QEP0</td>
</tr>
</tbody>
</table>

Notes:
- AIN 1.8V: Analog Input 1.8V
- VIN: Power Input
- USB1: USB Connector
- GPIO: General Purpose Input/Output
- SYS: System Power
- GND: Ground
- PRU: Programmable Real-Time Unit
- QEP: Quadrature Encoder Processor
- eCAP: Embedded Analog-to-Digital Converter

Additional Pins:
- **CAN1, TX, RX**: CAN Bus Interface
- **GPIO**: Additional General Purpose I/O Pins
- **STRB**: Synchronization Trigger Input
- **GPIO**: Additional General Purpose I/O Pins
- **QEP**: Quadrature Encoder Processor
- **eCAP**: Embedded Analog-to-Digital Converter
- **PRU**: Programmable Real-Time Unit
- **USB1, V_EN**: USB Power and Enable
- **VIN**: Power Input
- **MISO**: Master-In, Slave-Out
- **SPI0**: Serial Peripheral Interface
- **CS**: Chip Select
- **CLK**: Clock
- **AIN 3.3V**: 3.3V Power Input
- **9**: PRU1 Pin 9
- **11**: PRU1 Pin 11
- **35**: PWM0 Pin 35
- **16**: CAN1 Pin 16
- **33**: GPIO Pin 33
- **36**: GPIO Pin 36
- **10**: PRU1 Pin 10
mikroBus Click

- Analog - **AN**
- Reset - **RST**
- SPI Chip Select - **CS**
- SPI Clock - **SCK**
- SPI Master Input Slave Output - **MISO**
- SPI Master Output Slave Input - **MOSI**
- VCC-3.3V power - **+3.3V**
- Reference Ground - **GND**

- **PWM** - PWM output
- **INT** - Hardware Interrupt
- **RX** - UART Receive
- **TX** - UART Transmit
- **SCL** - I²C Clock
- **SDA** - I²C Data
- **+5V** - VCC-5V power
- **GND** - Reference Ground
Connecting mikroBus Clicks
BaconBits objectives

- Designed specifically for e-ale training
- Inspired by “Bacon Cape” by Dave Anders
 - Designed for similar purpose on BeagleBone
- Provides target for common embedded interfaces
 - SPI, I2C, GPIO, PWM, ADC, USB, serial
- Avoided buying several modules
BaconBits features

- USB-to-Serial micro B
- USB Host A with power
- Power and Reset buttons
- GPIO push button
- ADC potentiometer thumbwheel
- PWM tri-color LED
- SPI 2-digit 7-segment display
- I2C accelerometer
BaconBits GPIO button

+3.3V

4.7K
R11

SW1
BTN

GND

USER BUTTON
BaconBits ADC thumbwheel

- P1_18
- P1_19 (AIN0)
- P1_17

THUMBWHEEL

RV1 3352T-1-502LF

ADC_PWR

ANALOG_IN

ADC_GND
BaconBits RGB LED
BaconBits RGB LED

Diagram showing the connections and components related to RGB LED.
BaconBits SPI 7-segment display

EMULATED 7 SEGMENTS
BaconBits I2C accelerometer

ACCELEROMETER
Developer experience

- Customized Debian images – bbb.io/latest
- Self-hosted tools for ARMs and PRU
- Libraries for various high-level languages
- Scripts for common tasks
- Sources for bootloader, device tree, etc.
- Servers for network-based development
Single cable development

- Power, network, develop
- You can add a network and power many other ways
Some work in progress

- Add proxy for various services (in Buster IoT images today)
- Integrate common web-based WiFi provisioning
 - SeeedStudio BeagleBone Green Wireless ships with ‘wifidog’ → we will unify approach
- Cross-platform distro installer app
 - See USB NETCONSOLE presentation
- Support for Grove modules and mikroBus clicks
 - Focus on device-tree overlays and kernel patches
- Integration alignment with complete domain solutions
 - Intelligent Agent Replicape/Revolve, Bela Mini, BeagleLogic, etc.
- Improved and integrated PRU examples
- Move to distro friendly approaches for customizations
Write image to microSD with Etcher
Insert microSD and boot
Connect to the USB network
Open the IDE
USB gadgets

- Linux name for device/slave drivers
 - i.e., when not host
- USB devices have “classes”
 - Mass storage
 - Camera
 - Audio
 - Printer
 - “HID” or human-interface device like mouse and keyboard
 - Communications
USB gadgets

- Default image USB gadgets
 - Virtual mass storage
 - Serves you up README.htm
 - Virtual serial
 - Provides access to console after kernel boot
 - Virtual network
 - Enables access to ssh and web servers
TI AM335x: bootrom

From: (AM335x and AMIC110 Sitara™ Processors Technical Reference Manual (Rev. P))

SYSBOOT[15:14] = 01 = 24Mhz
SYSBOOT[4:0] = 11000

1. SPI0
2. MMC0 - going to use today
3. USB0 - (node-beagle-boot)
4. UART0
26.1.8.5.3 Booting Procedure

The high level flowchart of the eMMC / eSD and MMC/SD booting procedure is depicted in Figure 26-22.

Figure 26-22. MMC/SD Booting

- Initialize the MMC / SD driver
- Detect card or embedded memory
 - Not detected
 - Detected
- Configure the card address (RDA)
- Booting file found?
 - No
 - Yes, "Raw mode detected?"
 - No
 - Get the booting file
 - Yes
 - Get raw data
- MLO
- Failed
- Success
TI AM335x: bootrom: raw mode:

1. 0x0 <- (FAT Boot Sector, let's leave it blank...)
2. 0x20000 (128KB) <- We are going to use this location
3. 0x40000 (256KB) <- (2nd "backup" location)
4. 0x60000 (384KB) <- (3rd "backup" location)

Only 128KB in size... (hint, only 128KB of SRAM)
Das U-Boot (the Universal Boot Loader) U-Boot

Original Author: Wolfgang Denk, now maintained by Tom Rini

- https://www.denx.de/wiki/U-Boot
- http://git.denx.de/?p=u-boot.git;a=summary
U-Boot: AM335x

Outputs two files for TI am335x targets:

- MLO = SPL (or Secondary Program Loader)
- u-boot.img (or u-boot-dtb.img) (U-Boot)
U-Boot: SPL

1. Initializes main memory (DDRx for am335x)
2. Loads full (U-Boot) into DDR memory

Or:

3. Initializes main memory (DDRx for am335x)
4. Loads Linux Kernel into DDR memory (aka: Falcon mode, faster boot mode/etc)
U-Boot:

- Network
- USB
- MMC
- File System (fat/extX)
- Shell

Sometimes you don’t need a full OS, have U-Boot init and then have U-Boot load/run your application.
U-Boot:

CPU: AM335X-GP rev 2.1
I2C: ready
DRAM: 512 MiB
Some drivers were not found
Reset Source: Power-on reset has occurred.
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
Using default environment

Board: BeagleBone Black
<ethaddr> not set. Validating first E-fuse MAC
BeagleBone Black:
Model: SeeedStudio BeagleBone Green:
U-Boot: microSD

Insert USB-microSD adapter, and type “lsblk”

```
voodoo@hestia:~/Supercon-2017-PocketBeagle$ lsblk
NAME   MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda   8:0   0 465.8G   0 disk
  └─sda1  8:1   0 465.8G   0 part /
sde   8:64  1  7.4G   0 disk
  └─sde1  8:65  1  7.4G   0 part
```

That's our 8GB USB Flash Drive

Open: system.sh change: MMC=/dev/sde
U-Boot: Format microSD

```bash
sudo dd if=/dev/zero of=${MMC} bs=1M count=10

sudo sfdisk ${MMC} <<-__EOF__
4M,,L,*
__EOF__

sudo mkfs.ext4 -L rootfs ${MMC}1

voodoo@hestia:~/Supercon-2017-PocketBeagle$ ./scripts/format_drive.sh
U-Boot: (refresh for your memory)


1. 0x0
2. 0x20000 (128KB) <- We are going to use this location
3. 0x40000 (256KB)
4. 0x60000 (384KB)

```
sudo dd if=./deploy/MLO of=${MMC} count=1 seek=1 bs=128k
sudo dd if=./deploy/u-boot.img of=${MMC} count=2 seek=1 bs=384k
```
Base Rootfs: Debian 9.x (Stretch)

Maintainer: me (with lots of help from all the Debian Developers and 1000’s of other users)

- https://www.debian.org/
- https://github.com/beagleboard/image-builder
Device Tree

- See kernel documentation for bindings
  - devicetree/bindings/eeprom/eeprom.txt
- Local copies enable you to extend on the fly
  - /opt/source/dtb-4.9-ti
  - /opt/source/bb.org-overlays
- Overlays loaded in u-boot, but also possible via kernel configfs
config-pin

- config-pin -i p1.36
- config-pin -q p1.36
- config-pin p1.36 pruout
show-pins.pl

- perl /opt/scripts/device/bone/show-pins.pl -v
mikroBus Click usage

- See bbb.io/pbmb
- Supported with device-tree overlays loaded in u-boot
Enabling PRU

- 2 possible drivers: remoteproc or uio
- Enabled via device tree at boot
  - Different systems might have different defaults
Demonstrations

- BaconBits demo
Some current projects

- Bela Mini
- PocketPilot
Contributions and issues

- Cape/add-on support
  - https://github.com/beagleboard/bb.org-overlays
- Image deltas
  - https://github.com/beagleboard/image-builder
- In-system examples
  - https://github.com/beagleboard/bone101
Questions?
Thank you!