
E-ALE Under Creative Commons License 2018

GDB DEBUGGING IN BOTH USER AND
KERNEL SPACE

Mike Anderson

mailto://mike@theptrgroup.com

E-ALE Under Creative Commons License 2018

What We Will Talk About…

E-ALE-Portland-0318-2

• The GNU Project, GCC and gdb
• Native vs. cross debugging
• Compiling for debugging
• gdb CLI, TUI and gdbfront-ends
• Getting help, scripts and macros
• Launching, loading and running applications
• Attaching to a running application
• Breakpoints, watchpoints, catchpoints and more
• gdbserver and its options
• Setting up for kernel debugging
• Running the kernel with kgdb

E-ALE Under Creative Commons License 2018

The GNU Project and GCC

E-ALE-Portland-0318-3

• The ostensible goal of the GNU Project was to create a Un*x clone without any AT&T sources
 GNU’s Not Unix

• First, there was the GNU C compiler (gcc)
 Later there was a C++ version (g++)
 Architected as a front-end language parser and a back-end code generator
 Also added numerous binutils such as the linker, librarian, etc.

• gcc was originally targeted as an OS bring-up tool and was completely command-line driven
• As more language front-ends were added, it became GCC

 GNU Compiler Collection
• Front ends for C, C++, Objective-C, FORTRAN, Ada and Go with associated libraries like libstdc++, etc.

• Community supported and peer reviewed with support from major silicon manufacturers

E-ALE Under Creative Commons License 2018

GDB

E-ALE-Portland-0318-4

• The GNU debugger (gdb) was built as a source
debugger for GCC
gdb supports Ada, Assembly, C/C++, D, FORTRAN, Go,

Objective-C, OpenCL, Modula-2, Pascal and Rust
• No direct Python or Java support (gcj was dropped from GCC in

2017)

• Also designed to be run from a CLI
But, there are numerous GUI front-ends to gdb

E-ALE Under Creative Commons License 2018

Native vs. Cross Debugging

E-ALE-Portland-0318-5

• This mirrors the development approach
Native means it’s running on the platform your debugging the code on
Cross debugging is running gdb on a host computer and talking to the code via a

connection to, typically, a foreign CPU architecture

• Native debugging may leave you with using the CLI if there isn’t enough
horsepower or hardware on the target to run a window manager or VNC

• Cross debugging allows you to use the horsepower of your development
host to run the debugger while the code runs on the target via a helper
application
Cross debugging adds connection latency and complexity

• The ease of use of the GUI front end may be worth it

E-ALE Under Creative Commons License 2018

Compiling for Debugging

E-ALE-Portland-0318-6

• gdb will typically require the source code to be
specially compiled for debugging
You can still debug non-debug code if you really like

assembly language

• Uses the DWARF debugging standard file format
The debugging information can be extracted from the

executable using objcopy or strip

• To build the code with debugging enabled, we use the -g
option to the compiler
But, there are several levels of debug information we can include

Source: dwarfstd.org

E-ALE Under Creative Commons License 2018

GDB Debug Levels

E-ALE-Portland-0318-7

• -g0 will explicitly produce no debug information
• -g1 produces minimal information, enough for making back

traces, but no information about local variables and no line
numbers

• -g2 default debug level when not specified. Typically this will
produce symbols, line numbers etc needed for symbolic
debugging
This is the default for the -g option to the compiler

• -g3 includes extra information, such as all the macro
definitions present in the program

E-ALE Under Creative Commons License 2018

Example Compile for GDB

E-ALE-Portland-0318-8

• Example compilation to enable debugging
 $ arm-linux-gnueabi-gcc –g3 –o hello helloWorld.c

• Example for examining the debug info in ELF header
$ arm-linux-gnueabi-objdump -h hello
…

 24 .comment 0000002a 00000000 00000000 00000a97 2**0

 CONTENTS, READONLY

 25 .debug_aranges 00000020 00000000 00000000 00000ac1 2**0

 CONTENTS, READONLY, DEBUGGING

 26 .debug_pubnames 00000031 00000000 00000000 00000ae1 2**0

 CONTENTS, READONLY, DEBUGGING

 27 .debug_info 00000179 00000000 00000000 00000b12 2**0

 CONTENTS, READONLY, DEBUGGING

 28 .debug_abbrev 000000d4 00000000 00000000 00000c8b 2**0

 CONTENTS, READONLY, DEBUGGING

 29 .debug_line 000003ea 00000000 00000000 00000d5f 2**0

 CONTENTS, READONLY, DEBUGGING

 30 .debug_frame 00000090 00000000 00000000 0000114c 2**2

 CONTENTS, READONLY, DEBUGGING

 31 .debug_str 000000ea 00000000 00000000 000011dc 2**0

 CONTENTS, READONLY, DEBUGGING

 32 .debug_loc 00000058 00000000 00000000 000012c6 2**0

 CONTENTS, READONLY, DEBUGGING

 33 .debug_macinfo 00009e52 00000000 00000000 0000131e 2**0

 CONTENTS, READONLY, DEBUGGING

E-ALE Under Creative Commons License 2018

Running GDB CLI

E-ALE-Portland-0318-9

• When gdb is built from source, we will specify the host and target environments
 Allows for Windows x Linux, x86 host x ARM target, etc.

• When running gdb from the CLI, we can just use the gdb command:
GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.5) 7.11.1
Copyright (C) 2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word".
(gdb)

E-ALE Under Creative Commons License 2018

Running gdb in TUI Mode

E-ALE-Portland-0318-10

• TUI mode is a text-based user interface that separates
out the program text from the gdb command line

• More clear cut than using the typical CLI, but maybe not
as good as the GUIs for gdb like ddd

• You can start gdb in TUI mode using the –TUI command
line argument

• You can switch in and out of TUI mode using
<CTRL> X A keyboard sequence

E-ALE Under Creative Commons License 2018

GDB GUIs

E-ALE-Portland-0318-11

• There are standalone and IDE-based
front ends to gdb

• These include:
ddd

• Data Display Debugger
− Also works with cross debugging
− http://www.gnu.org/software/ddd/

 insight
• Redhat-developed
• MDI GUI approach
• http://sourceware.org/insight/

• IDE support includes Eclipse, Kdevelop,
Slickedit®, CodeWarrior®, Arriba® and more

http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://sourceware.org/insight/
http://sourceware.org/insight/

E-ALE Under Creative Commons License 2018

ddd Front End GUI

E-ALE-Portland-0318-12

• ddd is the GNU-supported graphical
interface for gdb

• ddd supports:
gdb, jdb, Python, Perl, TCL and PHP

• You can automatically load the application
into gdb at invocation

• ddd can be started with the
-debugger option to run a
gdb backend other than the
default gdb instance

$ ddd –debugger arm-linux-gnueabi-gdb myapp

E-ALE Under Creative Commons License 2018

The ddd GUI

E-ALE-Portland-0318-13

Main code window

Command Shortcuts

GDB command line

E-ALE Under Creative Commons License 2018

Getting Help in gdb

E-ALE-Portland-0318-14

• Whether using the CLI or the GUI, you should have access to the
gdb command line
It looks like (gdb)

• You can use the help command at the (gdb) prompt for any
query

• Use the apropos <word> command to find which gdb commands
might apply to your query

• Throughout the gdb help output, you will see references to “the
inferior”
Yes, that’s your program – don’t get a complex about it!

• As far as gdb is concerned, your program is running under gdb’s control

E-ALE Under Creative Commons License 2018

Example Help Output

E-ALE-Portland-0318-15

(gdb) help

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.

Type "help all" for the list of all commands.

Type "help" followed by command name for full documentation.

Type "apropos word" to search for commands related to "word".

Command name abbreviations are allowed if unambiguous.

E-ALE Under Creative Commons License 2018

Command Definition and Macros

E-ALE-Portland-0318-16

• gdb has the ability to define your own commands/scripts
• Use the define <name> command to define a sequence of gdb

commands
Enter each one line-by-line and finish with a single line “end”

• Useful for creating debugging command scripts that you can save for later use or just to
save repeated typing

• Use the document <name> to write documentation for your defined
commands
Again, enter each one line-by-line and finish with a single line “end”

• There is also the ability to define C/C++ preprocessor macros using the
macro define command
Visible to all of the inferior’s source files

E-ALE Under Creative Commons License 2018

gdb Scripts

E-ALE-Portland-0318-17

• If it exists, gdb will execute all of the commands
found in .gdbinit in the current directory

• Useful for executing a sequence of gdb commands
at gdb initialization

• The -x command line option to gdb also allows for
running scripts at gdb load time

E-ALE Under Creative Commons License 2018

Examining Code

E-ALE-Portland-0318-18

• Once the program is loaded in gdb, you can list any
of the source files using the list command
Options to list a LINENUM, FILE:LINENUM,
FUNCTION, FILE:FUNCTION or *ADDRESS

• You can specify the number of lines to list as a
second parameter
Defaults to 10 but can be changed with
set listsize

E-ALE Under Creative Commons License 2018

Manipulating Internal Settings

E-ALE-Portland-0318-19

• gdb has dozens internal options like setting the
radix, terminal type, command history size and more

Use show on the gdb command line to see them all

• You can change the options using the set
command

E.g., set output-radix 16 would set the display
radix to hexidecimal

E-ALE Under Creative Commons License 2018

Load/Execute Your Code

E-ALE-Portland-0318-20

• If you don’t load the program from the command
line, you can load additional files using the
file <filename> command

• Once the code is loaded into gdb, you can execute it
using the run command

• You can pass parameters in the same command or
you can use the set args command
show args will allow you to see the arguments

E-ALE Under Creative Commons License 2018

Calling Functions Interactively

E-ALE-Portland-0318-21

• Once the code is loaded, you can actually call
program functions from the gdb command line

The syntax and parameter passing is based on the
language the code is written in

• The function will be called and the return will be
printed and saved in the value history

E-ALE Under Creative Commons License 2018

Setting Variables

E-ALE-Portland-0318-22

• You can define new variables, set a register value or
modify program variables using the
set VAR = EXP (or whatever the language
equivalent is for your language)
Expressions are any valid expression for the language

• You can set a variable that uses the same name as a gdb
command using the
set variable VAR = EXP syntax

E-ALE Under Creative Commons License 2018

Printing Expressions

E-ALE-Portland-0318-23

• Use the print EXP syntax to print any value from the current
stack frame, globals or an entire file

• Use $NUM to get the previous value of NUM
You can refer back farther using $$NUM

• Registers are accessed using the $<REGNAME> syntax
• {TYPE}ADREXP refers to datum of data type {TYPE} located at

address ADREXP
• The @ symbol is a binary operator for treating consecutive data

objects anywhere in memory as an array
E.g., FOO@NUM gives an array whose first element is foo, whose second

is stored in the memory adjacent to FOO, etc.

E-ALE Under Creative Commons License 2018

Printing Expressions #2

E-ALE-Portland-0318-24

• EXP may be preceded with a /FMT modifier where /FMT is a
single character without a length modifier

• Format letters are o(octal), x(hex), d(decimal), u(unsigned
decimal), t(binary), f(float), a(address), i(instruction), c(char),
s(string) and z(hex, zero padded on the left)

• The specified number of objects of the specified size are
printed according to the format

• print can also dereference addresses ala
(gdb) print *ptr

E-ALE Under Creative Commons License 2018

The Difference Between Print and Display

E-ALE-Portland-0318-25

• There is another mechanism for displaying the value
of a variable that that is the display command

• Like print, display can show the variable with a
format

• However, display prints the variable’s value after
every step

Useful to see where a variable changes

E-ALE Under Creative Commons License 2018

Examine Memory at Address

E-ALE-Portland-0318-26

• If we have a known address in memory, such as a
pointer, we can display the memory at that address

• We can also use a format character but x also adds an
additional character to indicate the size of the display

• Size letters are b(byte), h(halfword), w(word), g(giant, 8
bytes)

• E.g., (gdb) x /db &test

E-ALE Under Creative Commons License 2018

Setting Breakpoints

E-ALE-Portland-0318-27

• gdb supports several types of breakpoint
Normal breakpoints b <lineno>

Temporary breakpoints tbreak <lineno>

Hardware breakpoints hbreak <lineno>

• Often the gdb GUI frontends normally have a menu
option for these

• You can also set conditional breakpoints
Beware of the overhead of these
(gdb) break <lineno> if <condition is true>

E-ALE Under Creative Commons License 2018

Setting Breakpoints #2
• Use symbols to identify a breakpoint

(gdb) b main

Breakpoint 1 at 0x8048355: file watch.c, line 5

(gdb) run

Starting program:/home/pocket/debug/watch

Breakpoint 1, main() at watch.c:5

• You can issue commands to be run when the breakpoint is hit
(gdb) After b main

(gdb) commands

Type commands to be executed when breakpoint 1 is hit, one per line

End with a line saying just “End”

> silent

> printf “ main started\n”

> cont

> end

E-ALE Under Creative Commons License 2018

Stepping Through Code
• gdb has a number of ways to step through

the code after encountering a breakpoint
• Step – step one line and step into functions
• Next – step one line and step over functions
• Finish – you stepped into a function

 accidentally and you want to finish
 this routine

• Stepi – step one assembly language instruction
 and step into function calls

• Nexti – step one assembly language instruction
 but step over function calls

E-ALE Under Creative Commons License 2018

Attach to a Running Program

E-ALE-Portland-0318-30

• gdb has the ability to attach to a running program
$ gdb –p <process id>

• This will stop the running program at its current
execution point

• You can then load the executable’s code and symbol
table using the file command to load the source if

it hasn’t already been loaded

E-ALE Under Creative Commons License 2018

Monitoring a Variable

• Often, we’ll find ourselves with a variable that’s
getting stepped on by something

We’re just not sure where or when

• To help locate these occurrences, gdb has an option
known as a watchpoint

• Uses a hardware breakpoint (if available)

E-ALE Under Creative Commons License 2018

Watchpoints
• Force a program break when a selected variable’s value changes
• Show old and new value and location in code that caused the

change in value
(gdb) b main

(gdb) run

(gdb) watch x

(gdb) cont

Hardware watchpoint 2: x

Old value = 13451357

New value = 10

Main() at watch.c:10

E-ALE Under Creative Commons License 2018

Breaking on Events

• gdb also has a means of breaking when certain
events occur

• These include exceptions, calls to fork, loading shared
libraries, signals, syscalls, unloading shared libraries, calls
to exec and much more

• We can also reinject a exception with the rethrow
options

E-ALE Under Creative Commons License 2018

Catchpoints

• Used for C++ catch and throw events as well as Ada
failed assertions
(gdb) catch throw

(gdb) catch catch

• Use tcatch for a one-time catch that is

automatically deleted after the first time it’s caught

E-ALE Under Creative Commons License 2018

Deleting Breakpoints, Watchpoints, etc.
• To list breakpoints, etc. use:

(gdb) info breakpoints

• To delete a breakpoint, watchpoint or catchpoint use:
(gdb) delete [breakpoint]

• Clear breakpoints associated with functions
(gdb) clear |function| line num | file:function |
file:line |

• At any point, you can use the help feature to understand your options e.g.,:
(gdb) help breakpoints

• There are several good books, websites and manual pages on the features of
gdb

E-ALE Under Creative Commons License 2018

Debugging with Optimization
• Ideally, if you’re debugging code, you should disable any

code optimization
But, sometimes that is impossible due to in-lining of

functions like in the kernel

• You can debug optimized code
However, be prepared for some odd behavior

on the part of the debugger
• Variables might be removed
• The instruction pointer can go backwards
• The debug is still valid, but the behavior can be disconcerting

Source: blogspot.com

E-ALE Under Creative Commons License 2018

Accessing Local Variables

• Show local symbols
(gdb) info locals

• Show CPU registers
(gdb) info registers

• Display stack back trace
(gdb) bt (backtrace)

• Gives detailed information on the current stack frame
(gdb) info frame

E-ALE Under Creative Commons License 2018

Working with Signals via gdb
• Show signals

(gdb) info signals

• Prints a table of how signals and how gdb will handle each one
(gdb) info handle

• Change the way gdb will handle the signal
 nostop – do not stop the program but still print that signal occurred
 stop – stop program when signal occurs (implies print as well)
 print – print a message when signal occurs
 noprint – do not mention the occurrence of the signal
 pass – allow your program to see the signal so it can be handled
 nopass – do not pass the signal to your program
(gdb) handle signal keywords

• Delivers a SEGV signal to the current program
(gdb) signal SIGSEGV

E-ALE Under Creative Commons License 2018

Debugging Threads
• Show active thread ids

(gdb) info threads

• Select a thread by id
(gdb) thread n

• Restrict breakpoint to a particular thread
(gdb) break <break ident> thread <id>

Not specifying a thread ID will cause the breakpoint to apply to all
threads

• Restrict thread execution to current thread
(gdb) set scheduler-locking on | off

Source: optusnet.com.au

E-ALE Under Creative Commons License 2018

Generating “Core Dumps”
• When an application terminates abnormally, a

core file can be generated
core file - (n.) A file created when a program malfunctions

and terminates. The core file holds a snapshot of
memory, taken at the time the fault occurred. This file
can be used to determine the cause of the malfunction

• By default, this feature is disabled to preclude
“core droppings” in the file system
Use:
$ ulimit –c <max core file size in disk sectors>
to re-enable core file generation

Source: heartrails.com

E-ALE Under Creative Commons License 2018

Checking Core Dumps Settings
• First, check to see the default settings in your system

$ ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 20

file size (blocks, -f) unlimited

pending signals (-i) 16382

max locked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) unlimited

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

E-ALE Under Creative Commons License 2018

Core Dump pid-centric Files
• Generating separate core files per process when

multiple applications die simultaneously
• A proc entry already exists for this

/proc/sys/kernel/core_uses_pid

• Turn it on by
$ sudo echo “1” >
/proc/sys/kernel/core_uses_pid

• Now, each process generating a core dump will have a
corresponding file core.<pid> on rootfs

E-ALE Under Creative Commons License 2018

Using the Core File
• Once you have a core file, you can use gdb to try to determine

what went wrong
• Load the core file using:

$ gdb <application name> -core <corefile>

• gdb will load the application and will show you the point of
failure

• This will also work with most gdb front-ends
eclipse
ddd
Insight

E-ALE Under Creative Commons License 2018

Core Dump Debugging Example #1
• Application that produces a core dump
• app1.c

/* global variables */

int value = 20;

int divide = 4;

int sum = 0;

int main(int argc, char *argv[])

{

 volatile int result, x;

 for(x = 0; x < NUM_ITERATIONS; x++)

 {

 printf("value = %d divide = %d sum = %d\n", value, divide, sum);

 result = compute_it(value, divide);

 sum += result;

 divide++;

 value--;

 }

 return 0;

}

E-ALE Under Creative Commons License 2018

Core Dump Debugging Example #2
/***

* compute_it - support routine

*

*/

int compute_it(int no1, int no2)

{

 volatile int result;

#ifdef FP_ERROR /* Generate an arithmetic/floating point error */

 volatile int diff;

 diff = no1 - no2;

 result = no1 / diff;

#else if /* Generate a segmentation violation error */

 int * ptr;

 *ptr = 0;

#endif

 return result;

}

E-ALE Under Creative Commons License 2018

Core Dump Debugging Example #3

• Build the application with debug info in the ELF
$ gcc -g3 -o app1 app1.c

• Run the application and generate core file
$./app1

value = 20 divide = 4 sum = 0

Segmentation fault (core dumped)

• Invoke gdb to analyze the core file
$ gdb app1 -core core

E-ALE Under Creative Commons License 2018

Core Dump Debugging Example #4
• gdb command line console output

GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.5) 7.11.1
Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>...

Reading symbols from /home/student/debug/linux_debug_perf_labs/lab02/app1...done.

[New Thread 15231]

warning: Can't read pathname for load map: Input/output error.

Reading symbols from /lib/libc.so.6...(no debugging symbols found)...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib64/ld-linux-x86-64.so.2...(no debugging symbols found)...done.

Loaded symbols for /lib64/ld-linux-x86-64.so.2

Core was generated by `./app1'.

Program terminated with signal 11, Segmentation fault.

#0 0x00000000004005d6 in compute_it (no1=20, no2=4) at app1.c:70

70 *ptr = 0;

(gdb)

E-ALE Under Creative Commons License 2018

Core Dump Debugging Example #5
• Examine the core file for additional information

(gdb) info locals

 result = 32637

 ptr = 0x7f7d81d30250

(gdb) info frame

 Stack level 0, frame at 0x7fff55ea7a20:

 rip = 0x4005d6 in compute_it (app1.c:70); saved rip 0x400578

 called by frame at 0x7fff55ea7a60

 source language c.

 Arglist at 0x7fff55ea7a10, args: no1=20, no2=4

 Locals at 0x7fff55ea7a10, Previous frame's sp is 0x7fff55ea7a20

 Saved registers:

 rbp at 0x7fff55ea7a10, rip at 0x7fff55ea7a18

E-ALE Under Creative Commons License 2018

Core Dump Debugging Example #6
(gdb) info registers

rax 0x7f7d81d30250 140177025729104

rbx 0x14 20

rcx 0x400700 4196096

rdx 0x4 4

rsi 0x4 4

rdi 0x14 20

rbp 0x7fff55ea7a10 0x7fff55ea7a10

rsp 0x7fff55ea7a10 0x7fff55ea7a10

r8 0x1 1

r9 0x400700 4196096

r10 0x7fff55ea7030 140734634815536

r11 0x7f7d81a1c060 140177022500960

r12 0x400440 4195392

r13 0x7fff55ea7b30 140734634818352

r14 0x0 0

r15 0x0 0

rip 0x4005d6 0x4005d6 <compute_it+14>

eflags 0x10206 [PF IF RF]

cs 0x33 51

ss 0x2b 43

ds 0x0 0

es 0x0 0

fs 0x0 0

gs 0x0 0

E-ALE Under Creative Commons License 2018

Core Dump Debugging Example #7
(gdb) info stack

#0 0x00000000004005d6 in compute_it (no1=20, no2=4) at app1.c:70

#1 0x0000000000400578 in main (argc=1, argv=0x7fff55ea7b38) at app1.c:46

(gdb) info variables

All defined variables:

File app1.c:

int divide;

int sum;

int value;

Non-debugging symbols:

0x00000000004006d8 _IO_stdin_used

0x0000000000601018 __dso_handle

0x0000000000601028 completed.7382

0x0000000000601030 dtor_idx.7384

0x0000000000000008 __resp

0x0000000000000010 errno

0x0000000000000054 h_errno

E-ALE Under Creative Commons License 2018

What to Remember about Core Files

E-ALE-Portland-0318-51

• The key characteristic of a core file is that it is post
mortem

The application is already dead and no amount or
wishing on your part will bring it back

• Therefore, you are limited to examining the state of
the software when the error occured

E-ALE Under Creative Commons License 2018

Cross Debugging

E-ALE-Portland-0318-52

• While many of today’s more modern development
boards have sufficient RAM and CPU performance to
support native debugging, you can often achieve a
better experience using cross debugging

• We will run gdb on the host and a debug agent on
the target to facilitate debugging

• We will use a connection between the target and
host computer to enable cross debugging

E-ALE Under Creative Commons License 2018

Using gdb with Cross Debugging

E-ALE-Portland-0318-53

• As indicated earlier, gdb has the –debugger
feature to allow us to specify an alternate back end
for the debugger

E.g., we can debug ARM code from an x86

• We will need to use the target remote
command in gdb to connect to a waiting debug
agent

E-ALE Under Creative Commons License 2018

Remote Debugging with gdb/gdbserver
• The DWARF debug format does

not change because we’re using an
alternate processor type

• We will load the code to be debugged
into the local gdb session and then
connect with the remote gdbserver
Communications with the gdbserver helps keep the gdb session in sync

• The application to be debugged runs under the control of the
gdbserver application
Uses ptrace() functions to control starting and stopping of the target

application

Source: codeproject.com

E-ALE Under Creative Commons License 2018

Debugging with gdb/gdbserver #2
• Remote gdb debugging offers a flexible client/server design

with many different target communications options
Serial

• Has option to allow the target console to share the same serial port with the
target console

Network
Direct hardware communications e.g., JTAG

• It is possible to use the non-debug enabled code on the target
as long as the gdb has access to a debug-enabled version of
the exact same code
Avoids memory footprint concerns on the target

E-ALE Under Creative Commons License 2018

gdb/gdbserver Cross Debug Example
• For example:

On the target:
 $ gdbserver 192.168.7.1:1929 myapp &

On the host:
 (gdb) target remote 192.168.7.2:1929

• gdbserver can attach to a running program
 $ gdbserver hostIP:2345 --attach PID

• Works within GUI-based front-ends as well
You must tell gdb which back-end to use
 $ ddd –debugger arm-linux-gnueabi-gdb myapp

E-ALE Under Creative Commons License 2018

gdb/gdbserver Debugging Options
• target remote command options

serial port device (/dev/ttyS0)

tcp/ip address:port (e.g., 192.168.100.2:4000)

udp/ip address:port (e.g., udp:192.168.100.2:4000)

• Use set debug remote 1 to see packets sent to
and from the agent

• Once connected, a remote gdb/gdbserver session is just
like a native gdb session

E-ALE Under Creative Commons License 2018

Running Your Program with gdbserver

• If you’re using gdbserver, you can’t “run” you can only
“continue”
The program is already running under the control of the

gdbserver helper

• You can examine your program’s arguments using the
show args command
You can change the arguments for the next run using set
args command

E-ALE Under Creative Commons License 2018

Debugging the Kernel with gdb
• For many years, Linus fought against including a source

debugger into the kernel
• “If you can’t debug with printk, you shouldn’t be in the

kernel”

• Much of this reluctance was due to the implementation
of kgdb at the time
• It touched hundreds of files to patch the debugger in

• Late in the 2.6 kernel series, a new kgdb lite version was
developed and we finally got a debugger!

E-ALE Under Creative Commons License 2018

Compiling the Kernel with Debug Info

• This will increase the size of the debug kernel image by
about 30%

• However, you don’t need to load the debug version of the
kernel
Load the non-debug version to the target, but use the debug

version for the debugger/JTAG probe

• Save off the vmlinux and System.map files because these
are used by the debugger or by you to find key addresses
The (b)zImage can be loaded on the target as normal

E-ALE Under Creative Commons License 2018

Enabling Debugging in the Kernel

E-ALE Under Creative Commons License 2018

KGDB Lash up

• KGDB supports debugging via the serial port

The gdb debugger is running on a second machine using the
vmlinux you compiled with debugging symbols

You attach to the system being debugged using gdb’s
target remote command

Host Target

Network

Ethernet

RS-232

Sources: dell.com, beagleboard.org, netgear.com

E-ALE Under Creative Commons License 2018

Once Everything is Connected

• Once everything is connected and the target remote
command is entered on the debugger, you will reset
the target with the new kernel

• The boot cycle will stop until the kernel detects gdb
on the other side

• Once connected, you can set breakpoints in the kernel
and tell it to continue

E-ALE Under Creative Commons License 2018

Adding Device Driver Symbols

• Statically linked driver symbols are already built into
the kernel’s symbol table
Simply set break points on the driver methods

themselves

• Dynamically loaded drivers require additional steps
Load the driver as normal

• We need to find the addresses used by the driver

E-ALE Under Creative Commons License 2018

Debugging Loadable Modules
• In order to debug a loaded module, we need to tell the debugger

where the module is in memory
The module’s information is not in the kernel image because that shows

only statically-linked drivers

• This information can typically be found in /proc/modules or
/sys/module/<modulename>/sections/.text

• We then use the add-symbol-file gdb command to add the
debug symbols for the driver at the address for the loaded module
(gdb)add-symbol-file ./mydriver.o 0x<addr>

• How we proceed depends on where we need to debug

E-ALE Under Creative Commons License 2018

Debugging Loadable Modules #2
• If we need to debug the __init code, we need to set a

breakpoint in the load_module() function

• We’ll need to breakpoint just before the control is transferred to
the module’s __init
Somewhere around line 3438 of module.c (4.14.8 kernel):

 /* Start the module */

 if (mod->init != NULL)

 ret = do_one_initcall(mod->init);

• Once the breakpoint is encountered, we can walk the module
address list to find the assigned address for the module

E-ALE Under Creative Commons License 2018

Adding Additional Breakpoints
• Once you’ve added the module’s symbols, you can set

breakpoints at the various entry points of the driver
(gdb) b mydriver_read

• Other good breakpoint locations include:
sys_sync

panic

oops_enter

• When you hit the breakpoint, the debugger will drop to
the source code and you can start single stepping code

E-ALE Under Creative Commons License 2018

Summary

• Wow, that was a lot!

• But, at this point, you should be pretty well aware of
how to use gdb for both native and cross debugging

• Just remember, if you don’t put the bugs in there to
begin with, you don’t have to work so hard to get
them out

