
Debugging with GDB

Chris Simmonds

E-ALE 2018

Debugging with GDB 1 Copyright © 2011-2018, 2net Ltd

License

These slides are available under a Creative Commons Attribution-ShareAlike 4.0 license. You can read the full
text of the license here
http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to

• copy, distribute, display, and perform the work

• make derivative works

• make commercial use of the work

Under the following conditions

• Attribution: you must give the original author credit

• Share Alike: if you alter, transform, or build upon this work, you may distribute the resulting work only
under a license identical to this one (i.e. include this page exactly as it is)

• For any reuse or distribution, you must make clear to others the license terms of this work

Debugging with GDB 2 Copyright © 2011-2018, 2net Ltd

http://creativecommons.org/licenses/by-sa/4.0/legalcode

About Chris Simmonds
• Consultant and trainer
• Author of Mastering Embedded Linux Programming
• Working with embedded Linux since 1999
• Android since 2009
• Speaker at many conferences and workshops

"Looking after the Inner Penguin" blog at http://2net.co.uk/

@2net_software

https://uk.linkedin.com/in/chrisdsimmonds/

Debugging with GDB 3 Copyright © 2011-2018, 2net Ltd

http://2net.co.uk/
https://uk.linkedin.com/in/chrisdsimmonds/

Objectives

• Show how to use GDB to debug applications

• How to attach to a running process

• How to look at core dumps

• Plus, we will look at graphical interfaces for GDB

• Reference: MELP2 Chapter 14

"Debugging is twice as hard as writing the code in the first place. Therefore, if you write the
code as cleverly as possible, you are, by definition, not smart enough to debug it"
- Brian W. Kernighan

Debugging with GDB 4 Copyright © 2011-2018, 2net Ltd

Native vs cross compiling

Native (on target)

• Makers, e.g. Raspberry Pi running Debian

• PC development

Cross (on host)

• Most embedded development

• Better tools on dev host

• Better integrated with SCM, etc

Debugging with GDB 5 Copyright © 2011-2018, 2net Ltd

Remote debugging

Program
symbols

gdb from
toolchain

Program
without symbols

gdbserver

Host Target

Network
or

serial

Debugging with GDB 6 Copyright © 2011-2018, 2net Ltd

Debug info
• Need debug info on the host for the applications and libraries you

want to debug

• It’s OK for the files on the target to be stripped: gdbserver does not use
debug info

• Compile with

• -g: for source-level debugging

• -g3: to include information about macros as well

• Debug info may be included in the binary (the Buildroot way)

• Or placed in a sub-directory named .debug/ (the Yocto
Project/OpenEmbedded way)

Debugging with GDB 7 Copyright © 2011-2018, 2net Ltd

Code optimization

• Single-stepping through optimized code can be confusing

• Bad: -O2 and -Os

• Bearable: -O1

• Good: -Og (debug-friendly opt) or -O0 (no opt)

• If you you experience problems, reduce the optimization level

• If back trace seems not to work, enable stack frames by adding to
CFLAGS:

• -fno-omit-frame-pointer

Debugging with GDB 8 Copyright © 2011-2018, 2net Ltd

Setting sysroot

• sysroot tells GDB where to find library debug info

• For Buildroot
set sysroot <toolchain sysroot>

• Using a Yocto Project SDK:
set sysroot /opt/poky/<version>/sysroots/<architecture>

Debugging with GDB 9 Copyright © 2011-2018, 2net Ltd

Command-line debugging
Development host Embedded target

gdbserver :2001 helloworld

$ arm-poky-linux-gnueabi-gdb helloworld
(gdb) set sysroot /opt/poky/2.5.1/...
(gdb) target remote 192.168.7.2:2001

“Remote debugging from host 192.168.7.1”

{program runs to main()}

(gdb) break main
(gdb) continue

Debugging with GDB 10 Copyright © 2011-2018, 2net Ltd

Notes

• GDB command target remote links gdb to gdbserver

• Usually a TCP connection, but can be UDP or serial

• gbdserver loads the program into memory and halts at the first
instruction

• You can’t use commands such as step or next until after the start of C
code at main()

• break main followed by continue stops at main(), from which point you
can single step

Debugging with GDB 11 Copyright © 2011-2018, 2net Ltd

GDB command files

• At start-up GDB reads commands from

• $HOME/.gdbinit

• .gdbinit in current directory

• Files named by gdb command line option -x [file name]

• Note: auto-load safe-path

• Recent versions of GDB ignore .gdbinit unless you enable it in
$HOME/.gdbinit

add-auto-load-safe-path /home/myname/myproject/.gdbinit

Debugging with GDB 12 Copyright © 2011-2018, 2net Ltd

Library code

• By default GDB searches for source code in

• $cdir: the compile directory (which is encoded in the ELF header)

• $cwd: the current working directory
(gdb) show dir

Source directories searched: $cdir:$cwdv

• You can extend the search path with the directory command:
(gdb) dir /home/chris/src/mylib

Source directories searched: /home/chris/src/mylib:$cdir:$cwd

Debugging with GDB 13 Copyright © 2011-2018, 2net Ltd

Just-in-time debugging

• Both gdb and gdbserver can attach to a running process and debug it,
you just need to know the PID

• With gdbserver, you attach like this (PID 999 is an example)
gdbserver --attach :2001 999

• If debugging natively using GDB, use the attach command:
(gdb) attach 999

• In either case, to detach and allow the process to run freely again:
(gdb) detach

Debugging with GDB 14 Copyright © 2011-2018, 2net Ltd

Core dump

core
file

stack

mmap

heap

data

text (code)

A core file is created if:

• size is < RLIMIT_CORE

• the program has write permissions to
create a file

• not running with set-user-ID

• Set RLIMIT_CORE to un-limited using
command: ulimit -c unlimited

Debugging with GDB 15 Copyright © 2011-2018, 2net Ltd

Using gdb to analyse a core dump

• Command-line gdb
arm-poky-linux-gnueabi-gdb sort-debug ∼/rootdir/usr/bin/core
...

Core was generated by `/sort-debug /etc/protocols'.

Program terminated with signal 11, Segmentation fault.

#0 0x00008570 in addtree (p=0x0, w=0xbeaf4c68 "Internet") at

sort-debug.c:45

45 p->word = strdup (w);

(gdb) back

#0 0x00008570 in addtree (p=0x0, w=0xbeaf4c68 "Internet") at

sort-debug.c:45

#1 0x00008764 in main (argc=2, argv=0xbeaf4e34) at sort-debug.c:95

(gdb)

Debugging with GDB 16 Copyright © 2011-2018, 2net Ltd

Core pattern

• By default, core files are called core and placed in the working
directory of the program

• If /proc/sys/kernel/core_uses_pid is non zero a dot and PID number are
appended

• Or, core file names are constructed according to
/proc/sys/kernel/core_pattern

• See man core(5) for details

Example: /corefiles/%e-%p

%e executable name
%p PID

Debugging with GDB 17 Copyright © 2011-2018, 2net Ltd

Debug build - Yocto Project

• You need to add debug tools for the target: add this to your
conf/local.conf

EXTRA_IMAGE_FEATURES = "debug-tweaks tools-debug"

• And you need to build an SDK which will contain the tools for the host,
and the debug symbols
bitbake -c populate_sdk <image name>

Debugging with GDB 18 Copyright © 2011-2018, 2net Ltd

Debug build - Buildroot

• You need to run menuconfig and enable these options
PACKAGE_HOST_GDB

PACKAGE_GDB

PACKAGE_GDB_SERVER

ENABLE_DEBUG

• Then re-build the image

• The executables with debug symbols are put in
output/host/usr/<arch>/sysroot

Debugging with GDB 19 Copyright © 2011-2018, 2net Ltd

GUI front ends

• There are many front-ends, including

• TUI: Terminal User Interface

• DDD: Data Display Debugger

• Eclipse CDT

• As an example, the next two slides show how to use DDD

Debugging with GDB 20 Copyright © 2011-2018, 2net Ltd

DDD: Data Display Debugger

Debugging with GDB 21 Copyright © 2011-2018, 2net Ltd

Starting DDD

• --debugger [GDB to use]

• -x [GDB command file]

• Example:
$ ddd --debugger arm-poky-linux-gnueabi-gdb -x ∼/gdbcmd [program]

Debugging with GDB 22 Copyright © 2011-2018, 2net Ltd

Debugging kernel code
Outside the scope of this workshop, but ...

• Build kernel with KGDB - which is like gdbserver but integrated into the
kernel

• Connect to serial port on target

• Read debug symbols from vmlinux file

Development
machine

GDB

Target
machine

kgdb
serial

Kernel

vmlinux

Debugging with GDB 23 Copyright © 2011-2018, 2net Ltd

Lab time...

Get the slides and sample code from
https://cm.e-ale.org/2018/debugging-ELCE-2018-csimmonds

Follow the notes in
debugging-EALE-2018-csimmonds-workbook.pdf

Call me or one of the helpers if you encounter problems

Debugging with GDB 24 Copyright © 2011-2018, 2net Ltd

https://cm.e-ale.org/2018/debugging-ELCE-2018-csimmonds

Delving deeper

• This is an excerpt from my Fast track to embedded Linux class

• If you would like to discover more about the power of embedded Linux,
visit http://www.2net.co.uk/training.html and enquire about
training classes for your company

• 2net training is available world-wide

• Also, my book, Mastering Embedded Linux Programming, covers the
topics discused here in much greater detail

Debugging with GDB 25 Copyright © 2011-2018, 2net Ltd

http://www.2net.co.uk/training.html

	Debugging embedded devices using GDB

